精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,且AD=4DC.
(Ⅰ)求BD的长;
(Ⅱ)求sin∠CBD的值.

【答案】解:(Ⅰ)因为∠ABC=90°,AB=4,BC=3, 所以cosC= ,sinC= ,AC=5,
又因为AD=4DC,所以AD=4,DC=1.
在△BCD中,由余弦定理,
得BD2=BC2+CD2﹣2BCCDcosC
=32+12﹣2× =
所以
(Ⅱ)在△BCD中,由正弦定理,得
所以
所以 sin∠CBD=
【解析】(Ⅰ)由已知可求cosC,sinC,AC,又AD=4DC,可求AD,DC,从而由余弦定理BD2=BC2+CD2﹣2BCCDcosC即可求BD的值.(Ⅱ)在△BCD中,由正弦定理即可求得sin∠CBD的值.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】龙虎山花语世界位于龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖,玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自年春建成,试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.

某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在日赏花旺季对进园游客进行取样调查,从当日名游客中抽取人进行统计分析,结果如下:

年龄

频数

频率

4

合计

(I)完成表一中的空位①~④,并作答题纸中补全频率分布直方图,并估计日当日接待游客中岁以下的游戏的人数.

(II)完成表二,并判断能否有的把握认为在观花游客中“年龄达到岁以上”与“性别”相关;

(表二)

岁以上

岁以下

合计

男生

女生

合计

(参考公式: ,其中

(III)按分层抽样(分岁以上与岁以下两层)抽取被调查的位游客中的人作为幸运游客免费领取龙虎山内部景区门票,再从这人中选取人接受电视台采访,设这人中年龄在岁以上(含岁)的人数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}、{bn}满足:a1= ,an+bn=1,bn+1=
(1)求a2 , a3
(2)证数列{ }为等差数列,并求数列{an}和{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1 , 求实数λ为何值时4λSn<bn恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2﹣1|﹣2a+3,下列五个结论:
①当 时,函数f(x)没有零点;
②当 时,函数f(x)有两个零点;
③当 时,函数f(x)有四个零点;
④当a=2时,函数f(x)有三个零点;
⑤当a>2时,函数f(x)有两个零点.
其中正确的结论的序号是 . (填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)

求b关于a的函数关系式,并写出定义域;

证明:b>3a;

这两个函数的所有极值之和不小于,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列lanl 满足

=2kan对任意正整数n(n> k) 总成立,则称数列lanl 是“P(k)数列.学科@

(1)证明:等差数列lanl是“P(3)数列”;

若数列lanl既是“P(2)数列”,又是“P(3)数列”,证明:lanl是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin(ωx+φ)(ω>0,|φ|< )在同一个周期内,当x= 时y取最大值1,当x= 时y取最小值﹣1.
(1)求函数的解析式y=f(x);
(2)当x∈[ ]时.求函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)如图,已知抛物线,点A,抛物线上的点.过点B作直线AP的垂线,垂足为Q.

)求直线AP斜率的取值范围;

)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sinxcosx﹣2cos2x+1.
(1)求函数f(x)的最小正周期;
(2)将函数f(x)的图象向左平移 个单位,得到函数g(x)的图象.在△ABC中,角A,B,C的对边分别为a,b,c,若g( )=1,a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案