精英家教网 > 高中数学 > 题目详情
8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥与外接球的体积比为(  )
A.$\frac{2\sqrt{3}}{9π}$B.$\frac{\sqrt{3}}{9π}$C.$\frac{\sqrt{2}}{16π}$D.$\frac{8\sqrt{2}}{π}$

分析 直观图是正四面体,构造出正方体,利用正方体的性质能够准确求解.

解答 解:直观图如图所示的正四面体,
构造如图所示的正方体,正四面体在正方体中的位置如图所示,
正方体的边长为2,
球半径r=$\frac{1}{2}AC$=$\frac{1}{2}\sqrt{4+4+4}$=$\sqrt{3}$,
∴${V}_{球}=\frac{4}{3}π×(\sqrt{3})^{3}$=4$\sqrt{3}π$,
∴此棱锥与外接球的体积比为:$\frac{\frac{8}{3}}{4\sqrt{3}π}$=$\frac{2\sqrt{3}}{9π}$.
故选:A.

点评 解题时要认真审题,注意几何体的三视图及其外接球知识和构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,x轴非负半轴平分∠AOB,∠AOx=α,动圆P截OA所得弦MN=2a,截OB所得弦SQ=2b,试求动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过定点M(1,$\frac{\sqrt{2}}{2}$)
(1)求椭圆C的方程;
(2)已知直线l:y=kx-$\frac{1}{3}$(k∈R)与椭圆C交于A、B两点,试问在y轴上是否存在定点P,使得以弦AB为直径的圆恒过P点?若存在,求出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).
(1)求g(a)的解析式;
(2)若关于a的方程g(a)-3+b=0有两解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(1<a<4)的右顶点到直线x=4的距离为1,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)的图象过点(0,4),且关于方程f(x)=2x有两实数根:x1=1,x2=4;函数g(x)=2x+m.
(1)求f(x)解析式;
(2)若函数h(x)=f(x)-(2t-3)x(t∈R)在区间x∈[0,1]上最小值是$\frac{7}{2}$.求t的值;
(3)设f(x)与g(x)是定义在同一区间[p,q]上的两个函数,若函数F(x)=f(x)-g(x),在x∈[p,q]上有两个不同的零点,则称f(x)和g(x)在[p,q]上是“Ω函数”,若f(x)与g(x)在[0,3]上是“Ω函数”,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:方程x2+my2=2表示焦点在y轴上的椭圆,命题q:不等式4x2+4(m-2)x+1>0在x∈R上恒成立,又p∨q为真,?q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(3,2),B(-2,a),C(8,12)在同一条直线上,则a的值是(  )
A.0B.-4C.-8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(1)求椭圆E的方程;
(2)H是椭圆E与y轴正半轴的交点,椭圆E上是否存在两点M,N使得△HMN是以H为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案