精英家教网 > 高中数学 > 题目详情

已知焦点在坐标轴上的双曲线,它的两条渐近线方程为,焦点到渐近线的距离为,求此双曲线的方程.

解析试题分析:设双曲线方程为,
时,,,,此时焦点为(0,),
由题意得3=,解得,双曲线方程为;             ……6分
时,,,,此时焦点为(,0),
由题意得3= ,解得,双曲线方程为,即.
∴所求双曲线方程为.                        ……12分
考点:本小题主要考查了已知双曲线的渐近线方程和焦点到渐近线的距离求双曲线方程的方法,考查学生的运算求解能力.
点评:已知渐近线方程为,设双曲线方程为,这种设法经常用到,而且比设双曲线标准方程再用待定系数法求双曲线方程运算要简单,值得应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且
点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中点在原点且过点,焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)在正三角形内有一动点,已知到三顶点的距离分别为,且满足,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点是,且截直线所得弦长为,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.
 
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。

查看答案和解析>>

同步练习册答案