精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱中,,点是棱上不同于的动点.

(1)证明:

(2)若平面将棱柱分成体积相等的两部分,求此时二面角的余弦值.

【答案】(1)见解析; (2).

【解析】

(1)先由余弦定理可求得再由勾股定理可得然后由即可证得平面,从而得证;

(2)由题设知,,结合柱体的体积可得,所以的中点,以为坐标原点,的方向为轴,轴,轴建立空间直角坐标系,进而利用法向量求解二面角即可.

(1)证明:(方法一)在中,由余弦定理

.

,则,∴.

平面

平面

证明:(方法二)在中,

,∴

平面

平面

(2)

由题设知,

,∴的中点.

∴以为坐标原点,的方向为轴,轴,轴建立如图的空间直角坐标,

是平面的法向量,

,令

平面的法向量

.

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,分别为椭圆:的左右焦点,已知椭圆上的点到焦点,的距离之和为4.

(1)求椭圆的方程;

(2)过点作直线交椭圆,两点,线段的中点为,连结并延长交椭圆于点(为坐标原点),若,,等比数列,求线段的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为,第二次出现的点数为,试就方程组解答下列各题:

1)求方程组只有一个解的概率;

2)求方程组只有正数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱台中,分别是的中点.

1)求证:平面平面

2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十七世纪法国数学家费马提出猜想:“当整数时,关于的方程没有正整数解”.经历三百多年,于二十世纪九十年中期由英国数学家安德鲁怀尔斯证明了费马猜想,使它终成费马大定理,则下面说法正确的是( )

A. 存在至少一组正整数组使方程有解

B. 关于的方程有正有理数解

C. 关于的方程没有正有理数解

D. 当整数时,关于的方程没有正实数解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与椭圆有共同焦点且过点的双曲线的标准方程;

(2)已知抛物线的焦点在轴上,抛物线上的点到焦点的距离等于5,求抛物线的标准方程和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面,且分别是的中点.

(1)求证:平面平面

(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量是平面内的一组基向量,内的定点,对于内任意一点时,则称有序实数对为点的广义坐标,若点的广义坐标分别为,对于下列命题:

线段的中点的广义坐标为

A两点间的距离为

向量平行于向量的充要条件是

向量垂直于向量的充要条件是.

其中的真命题是________(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名射击运动员一次射击命中目标的概率分别是0.70.6,且每次射击命中与否相互之间没有影响,求:

1)甲射击三次,第三次才命中目标的概率;

2)甲、乙两人在第一次射击中至少有一人命中目标的概率;

3)甲、乙各射击两次,甲比乙命中目标的次数恰好多一次的概率.

查看答案和解析>>

同步练习册答案