ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µãΪF£¬Å×ÎïÏßÉÏÒ»µãAµÄºá×ø±êΪx1£¨x1£¾0£©£¬¹ýµãA×÷Å×ÎïÏßCµÄÇÐÏßl1½»xÖáÓÚµãD£¬½»yÖáÓÚµãQ£¬½»Ö±Ïßl£ºy=
p2
ÓÚµãM£¬µ±|FD|=2ʱ£¬¡ÏAFD=60¡ã£®
£¨1£©ÇóÖ¤£º¡÷AFQΪµÈÑüÈý½ÇÐΣ¬²¢ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÈôBλÓÚyÖá×ó²àµÄÅ×ÎïÏßCÉÏ£¬¹ýµãB×÷Å×ÎïÏßCµÄÇÐÏßl2½»Ö±Ïßl1ÓÚµãP£¬½»Ö±ÏßlÓÚµãN£¬Çó¡÷PMNÃæ»ýµÄ×îСֵ£¬²¢ÇóÈ¡µ½×îСֵʱµÄx1Öµ£®
·ÖÎö£º£¨1£©ÉèA(x1£¬
x12
2p
)
£¬ÔòA´¦µÄÇÐÏß·½³ÌΪl1£ºy=
x1
p
x-
x12
2p
£¬¼´¿ÉµÃµ½µÃD£¬QµÄ×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃµ½|FQ|=|AF|£®ÓɵãA£¬Q£¬DµÄ×ø±ê¿ÉÖª£ºDΪÏ߶ÎAQµÄÖе㣬ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖʿɵÃFD¡ÍAQ£¬¿ÉµÃ|AF|£¬ÀûÓÃÁ½µã¼äµÄ¾àÀë¸ÅÂʼ°µãAÂú×ãÅ×ÎïÏߵķ½³Ì¼´¿ÉµÃ³ö£®
£¨2£©ÉèB£¨x2£¬y2£©£¨x2£¼0£©£¬ÔòB´¦µÄÇÐÏß·½³ÌΪy=
x2
2
x-
x22
4
£¬ÓëÇÐÏßl1µÄ·½³ÌÁªÁ¢¼´¿ÉµÃµ½µãPµÄ×ø±ê£¬Í¬ÀíÇó³öµãM£¬NµÄ×ø±ê£®½ø¶øµÃµ½Èý½ÇÐÎPMNµÄÃæ»ýS¡÷=
1
2
|MN|•h
£¨hΪµãPµ½MNµÄ¾àÀ룩£¬ÀûÓñí´ïʽ¼°Æäµ¼Êý¼´¿ÉµÃµ½×îСֵ£¬¼´¿ÉµÃ³öx1µÄÖµ£®
½â´ð£º½â£º£¨1£©ÉèA(x1£¬
x12
2p
)
£¬ÔòA´¦µÄÇÐÏß·½³ÌΪl1£ºy=
x1
p
x-
x12
2p
£¬
¿ÉµÃ£ºD(
x1
2
£¬0)
£¬Q(0£¬-
x
2
1
2p
)

¡à|FQ|=
p
2
+
x
2
1
2p
=|AF|
£»
¡à¡÷AFQΪµÈÑüÈý½ÇÐΣ®
ÓɵãA£¬Q£¬DµÄ×ø±ê¿ÉÖª£ºDΪÏ߶ÎAQµÄÖе㣬
¡à|AF|=4£¬µÃ£º
p
2
+
x
2
1
2p
=4
x
2
1
+p2=16

¡àp=2£¬C£ºx2=4y£®
£¨2£©ÉèB£¨x2£¬y2£©£¨x2£¼0£©£¬ÔòB´¦µÄÇÐÏß·½³ÌΪy=
x2
2
x-
x22
4

ÁªÁ¢
y=
x2
2
x-
x
2
2
4
y=
x1
2
x-
x
2
1
4
µÃµ½µãP(
x1+x2
2
£¬
x1x2
4
)
£¬ÁªÁ¢
y=
x1
2
x-
x
2
1
4
y=1
µÃµ½µãM(
x1
2
+
2
x1
£¬1)
£®
ͬÀíN(
x2
2
+
2
x2
£¬1)
£¬
ÉèhΪµãPµ½MNµÄ¾àÀ룬ÔòS¡÷=
1
2
|MN|•h
=
1
2
¡Á(
x1
2
+
2
x1
-
x2
2
-
2
x2
)(1-
x1x2
4
)
=
(x2-x1)(4-x1x2)2
16x1x2
  ¢Ù

ÉèABµÄ·½³ÌΪy=kx+b£¬Ôòb£¾0£¬
ÓÉ
y=kx+b
x2=4y
µÃµ½x2-4kx-4b=0£¬
µÃ
x1+x2=4k
x1x2=-4b
´úÈë¢ÙµÃ£ºS¡÷=
16k2+16b
(4+4b)2
64b
=
(1+b)2
k2+b
b
£¬
ҪʹÃæ»ý×îС£¬ÔòÓ¦k=0£¬µÃµ½S¡÷=
(1+b)2
b
b
¢Ú
Áî
b
=t
£¬µÃS¡÷(t)=
(1+t2)2
t
=t3+2t+
1
t
£¬Ôò
S
¡ä
¡÷
(t)
=
(3t2-1)(t2+1)
t2
£¬
ËùÒÔµ±t¡Ê(0£¬
3
3
)
ʱ£¬S£¨t£©µ¥µ÷µÝ¼õ£»µ±t¡Ê(
3
3
£¬+¡Þ)
ʱ£¬S£¨t£©µ¥µ÷µÝÔö£¬
ËùÒÔµ±t=
3
3
ʱ£¬SÈ¡µ½×îСֵΪ
16
3
9
£¬´Ëʱb=t2=
1
3
£¬k=0£¬
ËùÒÔy1=
1
3
£¬½âµÃx1=
2
3
3
£®
¹Ê¡÷PMNÃæ»ýÈ¡µÃ×îСֵʱµÄx1ֵΪ
2
3
3
£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒåµÃµ½Å×ÎïÏßµÄÇÐÏßµÄбÂÊ¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹Øϵ¡¢µÈÑüÈý½ÇÐεÄÐÔÖÊ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢¼«ÖµÓë×îÖµµÈ֪ʶÓë·½·¨£¬ÊìÁ·ÕÆÎÕÆä½âÌâģʽÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©£¬Æä½¹µãFµ½×¼ÏߵľàÀëΪ
12
£®
£¨1£©ÊÔÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÉèÅ×ÎïÏßCÉÏÒ»µãPµÄºá×ø±êΪt£¨t£¾0£©£¬¹ýPµÄÖ±Ïß½»CÓÚÁíÒ»µãQ£¬½»xÖáÓÚM£¬¹ýµãQ×÷PQµÄ´¹Ïß½»CÓÚÁíÒ»µãN£¬ÈôMNÊÇCµÄÇÐÏߣ¬ÇótµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=
12
y
ºÍ¶¨µãP£¨1£¬2£©£¬A¡¢BΪÅ×ÎïÏßCÉϵÄÁ½¸ö¶¯µã£¬ÇÒÖ±ÏßPAºÍPBµÄбÂÊΪ·ÇÁãµÄ»¥ÎªÏà·´Êý£®
£¨I£©ÇóÖ¤£ºÖ±ÏßABµÄбÂÊÊǶ¨Öµ£»
£¨II£©ÈôÅ×ÎïÏßCÔÚA¡¢BÁ½µã´¦µÄÇÐÏßÏཻÓÚµãM£¬ÇóMµÄ¹ì¼£·½³Ì£»
£¨III£©ÈôA¡äÓëA¹ØÓÚyÖá³ÉÖá¶Ô³Æ£¬ÇóÖ±ÏßA¡äBÓëyÖá½»µãPµÄ×Ý×ø±êµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¬¹ýµãA£¨0£¬4£©µÄÖ±Ïßl½»Å×ÎïÏßCÓÚM£¬NÁ½µã£¬ÇÒOM¡ÍON£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©¹ýµãN×÷yÖáµÄƽÐÐÏßÓëÖ±Ïßy=-4ÏཻÓÚµãQ£¬Èô¡÷MNQÊǵÈÑüÈý½ÇÐΣ¬ÇóÖ±ÏßMNµÄ·½³Ì£®K£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=ay£¨a£¾0£©£¬Ð±ÂÊΪkµÄÖ±Ïßl¾­¹ýÅ×ÎïÏߵĽ¹µãF£¬½»Å×ÎïÏßÓÚA£¬BÁ½µã£¬ÇÒÅ×ÎïÏßÉÏÒ»µãM(2
2
 £¬ m) (m£¾1)
µ½µãFµÄ¾àÀëÊÇ3£®
£¨¢ñ£©ÇóaµÄÖµ£»
£¨¢ò£©Èôk£¾0£¬ÇÒ
AF
=3
FB
£¬ÇókµÄÖµ£®
£¨¢ó£©¹ýA£¬BÁ½µã·Ö±ð×÷Å×ÎïÏßµÄÇÐÏߣ¬ÕâÁ½ÌõÇÐÏߵĽ»µãΪµãQ£¬ÇóÖ¤£º
AB
 • 
FQ
=0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=2my£¨m£¾0£©ºÍÖ±Ïßl£ºy=x-mûÓй«¹²µã£¨ÆäÖÐmΪ³£Êý£©£®¶¯µãPÊÇÖ±ÏßlÉϵÄÈÎÒâÒ»µã£¬¹ýPµãÒýÅ×ÎïÏßCµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪM¡¢N£¬ÇÒÖ±ÏßMNºã¹ýµãQ£¨1£¬1£©£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÒÑÖªOµãΪԭµã£¬Á¬½ÓPQ½»Å×ÎïÏßCÓÚA¡¢BÁ½µã£¬Çó
|PA|
|
PB|
-
|
QA|
|
QB|
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸