精英家教网 > 高中数学 > 题目详情

【题目】二项式的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则的值为( )

A. 4 B. 8 C. 12 D. 16

【答案】B

【解析】二项式的展开式中只有第6项的二项式系数最大,则

二项式 展开式的通项公式为:

由题意有: ,整理可得: .

本题选择D选项.

一是在Tr1anrbr中, 是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指,而后者是字母外的部分,前者只与nr有关,恒为正,后者还与ab有关,可正可负.

二是二项式系数的最值与增减性与指数n的奇偶性有关,当n为偶数,中间一项的二项式系数最大;当n为奇数时,中间两项的二项式系数相等,且同时取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族人数

占本组的频率

第一组

[25,30)

120

0.6

第二组

[30,35)

195

p

第三组

[35,40)

100

0.5

第四组

[40,45)

a

0.4

第五组

[45,50)

30

0.3

第六组

[50,55)

15

0.3


(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.
(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2 ,求直线l的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式exf(x)>4+2ex(其中e为自然对数的底数)的解集为(
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,在四棱锥平面.

(I)求异面直线所成角的余弦值

(II)求证:平面

(II)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一壁画,最高点A处离地面AO=4m,最低点B处离地面BO=2m,观赏它的C点在过墙角O点与地面成30°角的射线上.

(1)设点C到墙的距离为x,当x= m时,求tanθ的值;
(2)问C点离墙多远时,视角θ最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.

查看答案和解析>>

同步练习册答案