精英家教网 > 高中数学 > 题目详情
17.已知圆C的方程为(x-3)2+y2=1,圆M的方程为(x-3-3cosθ)2+(y-3sinθ)2=1(θ∈R),过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则∠APB的最大值为$\frac{π}{3}$.

分析 首先判断圆与圆的位置关系,进一步利用特殊位置把结论转化为解三角形问题,最后求出∠APB的最大值.

解答 解:圆C的方程为(x-3)2+y2=1,圆心坐标为:C(3,0)半径r=1.
圆M的方程(x-3-3cosθ)2+(y-3sinθ)2=1,圆心坐标为:M(3+3cosθ,3sinθ),半径R=1.
由于cos2θ+sin2θ=1,|C1C2|>R+r,
所以两圆相离.
过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则要求∠APB的最大值,
只需满足:在圆M找到距离圆C最近点即可.
所以|PC|=3-1=2,|AC|=1.
解得:∠APC=$\frac{π}{6}$,
所以:∠APB=$\frac{π}{3}$,
即∠APB的最大值为$\frac{π}{3}$.
故答案为$\frac{π}{3}$.

点评 本题考查的知识要点:圆与圆的位置关系,特殊位置出现相关的三角形知识,及角的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设a=0.991.01,b=1.010.99,c=log1.010.99,则(  )
A.c<b<aB.c<a<bC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下面四个说法:
①长方体和正方体不是棱柱;
②五棱柱中五条侧棱相等;
③三棱柱中底面三条边都相等;
④由若干个平面多边形围成的几何体叫做多面体.
其中正确说法的个数为(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对一个容器为N的总体抽取容量为n的样本,当选择简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为a、b、c,则(  )
A.a=b<cB.b=c<aC.a=c<bD.a=b=c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设实数a、b均为区间(0,1)内的随机数,则关于x的不等式a2x2+bx+1<0有实数解的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:sin3θ(1+cotθ)+cos3θ(1+tanθ)=sinθ+cosθ.并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,△ABC中,AB=BC,∠ABC=120°,若以A,B为焦点的双曲线的渐近线经过点C,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\frac{1}{a}<\frac{1}{b}<0$,则下列不等式:①a+b<ab;②|a|<|b|;③a<b;④$\frac{b}{a}+\frac{a}{b}>2$中,正确不等式的序号是(  )
A.①②B.②③C.③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z=$\frac{1+mi}{1+i}$(i是虚数单位)是实数,则实数m=(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案