精英家教网 > 高中数学 > 题目详情
10.已知tan(α+β)=2,tan(α-β)=3,则$\frac{sin2α}{cos2β}$的值为$\frac{5}{7}$.

分析 构造思想,sin2α=sin[(α+β)+(α-β)],cos2β=cos[(α+β)-(α-β)],利用两角和与差的公式打开计算即可求$\frac{sin2α}{cos2β}$的值.

解答 解:由tan(α+β)=2,可得$\frac{sin(α+β)}{cos(α+β)}=2$,即sin(α+β)=2cos(α+β)
tan(α-β)=3,可得$\frac{sin(α-β)}{cos(α-β)}=3$,即sin(α-β)=3cos(α-β)
sin2α=sin[(α+β)+(α-β)],cos2β=cos[(α+β)-(α-β)],
那么:$\frac{sin2α}{cos2β}$=$\frac{sin[(α+β)+(α-β)]}{cos[(α+β)-(α-β)],}$=$\frac{5}{7}$.
故答案为:$\frac{5}{7}$.

点评 本题考查两角和与差的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1,E为线段B1C的中点.
(Ⅰ)证明:DE∥平面ABC;
(Ⅱ)若OC=OA,求二面角C-AB-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,问一开始输入的x=(  )
A.$\frac{3}{4}$B.$\frac{7}{8}$C.$\frac{15}{16}$D.$\frac{31}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:
商店名称ABCDE
销售额x(千万元)35679
利润额y(千万元)23345
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知底面为正方形的四棱锥P-ABCD,如图(1)所示,PC⊥面ABCD,其中图(2)为该四棱锥的正(主)视图和侧(左)视图,它们是腰长为4cm的全等的等腰直角三角形.
(1)根据图(2)所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;
(2)求四棱锥P-ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,|$\overrightarrow{BC}$|=4,△ABC的内切圆切BC于D点,且|$\overrightarrow{BD}$|-|$\overrightarrow{CD}$|=2$\sqrt{2}$,则顶点A的轨迹方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1(x>$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.类比实数的运算性质猜想复数的运算性质:
①“mn=nm”类比得到“z1z2=z2z1”;
②“|m•n|=|m|•|n|”类比得到“|z1•z2|=|z1|•|z2|”;
③“|x|=1⇒x=±1”类比得到“|z|=1⇒z=±1”
④“|x|2=x2”类比得到“|z|2=z2
以上的式子中,类比得到的结论正确的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.观察:$\sqrt{6}$+$\sqrt{15}$<2$\sqrt{11}$,$\sqrt{5.5}$+$\sqrt{15.5}$<2$\sqrt{11}$,$\sqrt{4-\sqrt{2}}$+$\sqrt{17+\sqrt{2}}$<2$\sqrt{11}$,…,对于任意的正实数a,b,使$\sqrt{a}$+$\sqrt{b}$<2$\sqrt{11}$成立的一个条件可以是(  )
A.a+b=22B.a+b=21C.ab=20D.ab=21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线f(x)=ax-1+1(a>1)恒过定点A,点A恰在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.5C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案