精英家教网 > 高中数学 > 题目详情
定义在R上的运算“⊕”:对实数x和y,x⊕y=
x(x≥y)
y(x<y)
,设函数f(x)=(x2+2x-2)⊕(-x2+2),x∈R.若函数f(x)+a的图象与直线y=1恰有两个公共点,则实数a的取值范围是
 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果函数f(x)在[a,b]上的最大值和最小值分别为M、m,那么m(b-a)≤△
 
b
a
f(x)≤M(b-a).根据这一结论求出△
 
2
-1
2 -x2的取值范围(  )
A、[0,3]
B、[
3
16
,3]
C、[
3
16
3
2
]
D、[
3
2
,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求方程lgx=3-x的近似解,可以取的一个区间是(  )
A、(0,1)B、(1,2)C、(2,3)D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=
x2-x, x∈[0,1)
-(0.5)|x-1.5| , x∈[1,2)
若x∈[-4,-2)时,f(x)≤
t
4
-
1
2t
有解,则实数t的取值范围是(  )
A、[-2,0)∪(0,1)
B、[-2,0)∪[1,+∞)
C、[-2,1]
D、(-∞,-2]∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,x≥4
f(x+2),x<4
,则f(1+log23)的值为(  )
A、6B、12C、24D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2cos
π
3
x  ,x≤2000
x-100       ,x>2000
,则f[f(2012)]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x         (x≤0)
log2x   (x>0)
,若函数y=f(x)-a有一个零点,则实数a的取值范围时
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
10.8-
1
30
x2,0<x≤10
108
x
-
1000
3x2
,x>10

(Ⅰ)求年利润W(万元)关于年产量x(千件)的函数解析式;
(Ⅱ)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线x2=4y的焦点作直线l交抛物线于A,B两点,分别过A,B作抛物线的切线l1,l2,则l1与l2的交点P的轨迹方程是(  )
A、y=-1B、y=-2C、y=x-1D、y=-x-1

查看答案和解析>>

同步练习册答案