【题目】已知复数z1 , z2满足|z1|=|z2|=1,|z1﹣z2|= ,则|z1+z2|等于 .
【答案】1
【解析】解:∵复数z1 , z2满足|z1|=1,|z2|=1,可令z1=cosA+isinA,z2=cosB+isinB
∵|z1﹣z2|= ,故有(cosA﹣cosB)2+(sinA﹣sinB)2=3,整理得2cosAcosB+2sinAsinB=﹣1
又|z1+z2|2=(cosA+cosB)2+(sinA+sinB)2=2+2cosAcosB+2sinAsinB=1
∴|z1+z2|=1
所以答案是:1.
【考点精析】关于本题考查的复数的模(绝对值),需要了解复平面内复数所对应的点到原点的距离,是非负数,因而两复数的模可以比较大小;复数模的性质:(1)(2)(3)若为虚数,则才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若方程x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,则 的取值范围是( )
A.[﹣2,1)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣∞,﹣2]∪[1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,
其中正确的个数为( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的普通方程为,曲线的参数方程为为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)求曲线与焦点的极坐标,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(1)求y关于t的回归方程 .
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程 中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com