精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

   如图,在直三棱柱中,平面侧面

  (Ⅰ)求证:

  (Ⅱ)若,直线AC与平面所成的角为,二面角

同解析


解析:

(Ⅰ)证明:如右图,过点A在平面A1ABB1内作ADA1BD,则

由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1A1B

AD⊥平面

A1BC.又BC平面A1BC

所以ADBC.

因为三棱柱ABCA1B1C1是直三棱柱,

AA1⊥底面ABC,所以AA1BC.

AA1AD=A,从而BC⊥侧面A1ABB1,

AB侧面A1ABB1

ABBC.

 

(Ⅱ)证法1:连接CD,则由(Ⅰ)知∠ACD就是直线AC与平面A1BC所成的角,∠ABA1就是二面角A1BCA的颊角,即∠ACDθ,∠ABA1=j.

于是在RtΔADC中,sinθ=,在RtΔADA1中,sin∠AA1D,

∴sinθ=sin∠AA1D,由于θ与∠AA1D都是锐角,所以θ=∠AA1D.

 又由RtΔA1AB知,∠AA1D+j=∠AA1B+j=,故θ+j=.

 证法2:由(Ⅰ)知,以点B为坐标原点,以BCBABB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.

AB=cca=,则B(0,0,0),A(0,c,0),C(),A1(0,c,a),

于是=(0,c,a),,=(0,c,a)

设平面A1BC的一个法向量为n=(x,y,z),

则由

可取n=(0,-ac),

于是n·=ac>0,n的夹角b为锐角,则b与q互为余角sinq=cosb=,

cosj=

所以sinq=cosj=sin(),又0<q,j<,所以q+j=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案