分析 (1)由已知得$\left\{\begin{array}{l}{{3a}_{1}+3d=9}\\{{(a}_{1}+2d-1)^{2}=2{a}_{1}({a}_{1}+3d+1)}\end{array}\right.$,由此能求出an=2n-1.
(2)由 bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,得到Tn要是数列{bn}在前n项和得到证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
解答 解:(1)∵公差不为零的等差数列{an}的前3项和S3=9,得到a2=3,
且2a1,a3-1,a4+1构成等比数列,
∴得到未知数a2与d的方程组:$\left\{\begin{array}{l}{3{a}_{1}+3d=9}\\{({a}_{2}+2d+1)(2{a}_{2}-2d)=({a}_{2}+d-1)^{2}}\end{array}\right.$
由d≠0,解得a1=1,d=2,
∴an=2n-1.
(2)证明:由题意得:bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$…+$\frac{1}{2n-1}$_$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.
∴$\frac{n}{2n+1}$=$\frac{1}{2+\frac{1}{n}}$,∵$0<\frac{1}{n}≤1$,所以$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
点评 本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{7}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | k1<k2<k3 | B. | k2<k1<k3 | C. | k3<k2<k1 | D. | k1<k3<k2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2015}{2016}$ | B. | $\frac{2015}{1008}$ | C. | $\frac{2015}{672}$ | D. | $\frac{2015}{336}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 1+$\sqrt{2}$ | C. | 7 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com