精英家教网 > 高中数学 > 题目详情
18.设数列{an}是公差大于0的等差数列,Sn为数列{an}的前n项和.已知S3=9,且2a1,a3-1,a4+1构成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),设Tn要是数列{bn}在前n项和,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

分析 (1)由已知得$\left\{\begin{array}{l}{{3a}_{1}+3d=9}\\{{(a}_{1}+2d-1)^{2}=2{a}_{1}({a}_{1}+3d+1)}\end{array}\right.$,由此能求出an=2n-1.
(2)由 bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,得到Tn要是数列{bn}在前n项和得到证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

解答 解:(1)∵公差不为零的等差数列{an}的前3项和S3=9,得到a2=3,
且2a1,a3-1,a4+1构成等比数列,
∴得到未知数a2与d的方程组:$\left\{\begin{array}{l}{3{a}_{1}+3d=9}\\{({a}_{2}+2d+1)(2{a}_{2}-2d)=({a}_{2}+d-1)^{2}}\end{array}\right.$
由d≠0,解得a1=1,d=2,
∴an=2n-1.
(2)证明:由题意得:bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$…+$\frac{1}{2n-1}$_$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.
∴$\frac{n}{2n+1}$=$\frac{1}{2+\frac{1}{n}}$,∵$0<\frac{1}{n}≤1$,所以$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

点评 本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.一个多面体的直观图如图1所示,其正(主)视图,侧(左)视图,俯视图如图2所示.
(1)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证;OE∥平面A1C1C;
(2)求平面AA1D1与平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}+2\overrightarrow{b}$与2$\overrightarrow{a}-\overrightarrow{b}$平行,则m=(  )
A.$-\frac{7}{2}$B.$-\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{1}{x}$在区间[1,2],[2,3],[3,4]的平均变化率分别为k1,k2,k3,则(  )
A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在(3-$\sqrt{x}$)n(n≥2且n∈N)展开式中x的系数为an,则$\frac{3}{{a}_{2}}$+$\frac{{3}^{2}}{{a}_{3}}$+$\frac{{3}^{3}}{{a}_{4}}$+…+$\frac{{3}^{2015}}{{a}_{2016}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2015}{672}$D.$\frac{2015}{336}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow{b}$=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.3B.1+$\sqrt{2}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\left|\overrightarrow{a}+\overrightarrow{b}\right|=2\sqrt{3}$、$\left|\overrightarrow{a}-\overrightarrow{b}\right|=2$,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow m=({sinx,1}),\overrightarrow{\;n}=({\sqrt{3}Acosx,\frac{A}{2}cos2x})({A>0})$,函数$f(x)=\overrightarrow m•\overrightarrow n$的最大值为6.
(1)求A的值及函数图象的对称轴方程和对称中心坐标;
(2)将函数y=f(x)的图象向左平移$\frac{π}{12}$个单位,再将所得的图象上各点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在$[{0,\frac{5π}{24}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(0)=0且f(x+1)=f(x)+x+1,
(1)求f(x)的表达
(2)求函数f(x)在[t,t+1]上的最小值g(t)
(3)若g(t)+m≥0对t∈R恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案