【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A.1800元
B.2400元
C.2800元
D.3100元
科目:高中数学 来源: 题型:
【题目】设f(x)=4cos(ωx﹣ )sinωx﹣cos(2ωx+π),其中ω>0.
(1)求函数y=f(x)的值域
(2)若f(x)在区间 上为增函数,求ω的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系:
x | 45 | 50 |
y | 27 | 12 |
(1)确定与的一个一次函数关系式;
(2)若日销售利润为P元,根据(I)中关系写出P关于的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是()
A. 锐角是第一象限的角,所以第一象限的角都是锐角;
B. 如果向量,则;
C. 在中,记,,则向量与可以作为平面ABC内的一组基底;
D. 若,都是单位向量,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆 的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为 ,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,.
(1)求数列的通项公式;
(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;
(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角坐标系中,点到抛物线的准线的距离为.点是上的定点,,是上的两动点,且线段的中点在直线上.
(Ⅰ)求曲线的方程及的值;
(Ⅱ)记,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)曲线与相交于两点,求过两点且面积最小的圆的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com