精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行四边形中,,,,四边形为矩形,平面平面,,点在线段上运动,且.

1)当时,求异面直线所成角的大小;

2)设平面与平面所成二面角的大小为),求的取值范围.

【答案】1 2

【解析】

1)证明平面,建立空间直角坐标系,写出向量的坐标,,故可得,即可求出异面直线所成角的大小;

2)设,利用向量表示出两个平面法向量的夹角余弦,根据,即可求得求的取值范围.

1)在中,,则

,即.

四边形为矩形,故

平面平面,平面平面平面

平面.

建立如图所示的空间直角坐标系,

,,,,,

时,

,可得

,即异面直线所成角的大小为.

(2)平面的一个法向量

.

设平面的法向量

,则,

平面的一个法向量,因为,所以.

因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校在年的自主招生考试成绩中随机抽取名学生的笔试成绩,按成绩分组:第,第,第,第,第得到的频率分布直方图如图所示

分别求第组的频率;

若该校决定在第组中用分层抽样的方法抽取名学生进入第二轮面试,

已知学生甲和学生乙的成绩均在第组,求学生甲和学生乙同时进入第二轮面试的概率;

根据直方图试估计这名学生成绩的平均分.(同一组中的数据用改组区间的中间值代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在轴上的抛物线过点,椭圆的两个焦点分别为,其中的焦点重合,过点的长轴垂直的直线交两点,且,曲线是以坐标原点为圆心,以为半径的圆.

(1)求的标准方程;

(2)若动直线相切,且与交于两点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C上异于AB的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,伴随着我国经济持续增长,户均家庭教育投入户均家庭教育投入是指一个家庭对家庭成员教育投入的总和也在不断提高我国某地区2012年至2018年户均家庭教育投入单位:千元的数据如表:

年份

2012

2013

2014

2015

2016

2017

2018

年份代号t

1

2

3

4

5

6

7

户均家庭教育投入y

y关于t的线性回归方程;

利用中的回归方程,分析2012年至2018年该地区户均家庭教育投入的变化情况,并预测2019年该地区户均家庭教育投入是多少.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,沿翻折到的位置,使平面平面.

(1)求证: 平面

(2)若在线段上有一点满足,且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数和样本方差(同一组中的数据用该组区间的中间值代表);

(2)由直方图可以认为,目前该校学生每周的阅读时间服从正态分布,其中近似为样本平均数近似为样本方差

(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若,令,则,且.利用直方图得到的正态分布,求

(ii)从该高校的学生中随机抽取20名,记表示这20名学生中每周阅读时间超过10小时的人数,求(结果精确到0.0001)以及的数学期望.

参考数据:.若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

同步练习册答案