精英家教网 > 高中数学 > 题目详情
在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖.
(Ⅰ)求仅一次摸球中奖的概率;
(Ⅱ)记连续3次摸球中奖的次数为ξ,求ξ的分布列.
分析:(1)从装有10只球的口袋中每次从中摸出2个球有C102种方法,而摸出的球是同色的事件数是C21C52,由古典概型公式,代入数据得到结果,注意运算要正确,因为第二问要用本问的结果.
(2)连续3次摸球中奖的次数为ξ,由题意知ξ的取值是0、1、2、3,本题是一个独立重复试验,根据上面的结果,代入公式得到结果,写出分布列.
解答:解:(Ⅰ)由题意知本题是一个古典概型,
∵从装有10只球的口袋中每次从中摸出2个球有C102
摸出的球是同色的事件数是C21C52
设仅一次摸球中奖的概率为P1
由古典概型公式,
∴P1=
2
C
2
5
C
2
10
=
4
9


(Ⅱ)由题意知ξ的取值可以是0,1,2,3
P(ξ=0)=(1-P13=
125
729

P(ξ=1)=C31(1-P12P1=
300
729
=
100
243

P(ξ=2)=C32(1-P1)P12
240
729
=
80
243

P(ξ=3)=P13=
64
729

∴ξ的分布列如下表
精英家教网
点评:求离散型随机变量期望的步骤:①确定离散型随机变量 的取值.②写出分布列,并检查分布列的正确与否,即看一下所有概率的和是否为1.③求出期望.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在某次抽奖活动中,一个口袋里装有4个白球和4个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖.
(1)求仅一次摸球中奖的概率;
(2)求连续2次摸球,恰有一次不中奖的概率;
(3)记连续3次摸球中奖的次数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖.
(Ⅰ)求仅一次摸球中奖的概率;
(Ⅱ)求连续2次摸球,恰有一次不中奖的概率;
(Ⅲ)记连续3次摸球中奖的次数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源:2010年北京市丰台区高三第二次模拟考试数学(理) 题型:解答题

(13分)在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖。

(Ⅰ)求仅一次摸球中奖的概率;

(Ⅱ)求连续2次摸球,恰有一次不中奖的概率;

(Ⅲ)记连续3次摸球中奖的次数为,求的分布列。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(13分)在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖。

(Ⅰ)求仅一次摸球中奖的概率;

(Ⅱ)求连续2次摸球,恰有一次不中奖的概率;

(Ⅲ)记连续3次摸球中奖的次数为,求的分布列。

查看答案和解析>>

同步练习册答案