精英家教网 > 高中数学 > 题目详情
7.已知一次函数y=f(x)的图象经过y=2ax-1+1和y=ln(3-x)+1的图象的定点,则f(x)=-2x+5.

分析 根据指数函数和对数函数的图象和性质,求出两个定点,设一次函数的解析式为f(x)=kx+b(k≠0),将两点坐标代入,构造关于k,b的方程组,解得答案.

解答 解:令x-1=0,即x=1,则y=2ax-1+1=3,
即函数y=2ax-1+1的图象恒过(1,3)点;
令3-x=1,则x=2,则y=ln(3-x)+1=1,
故函数y=ln(3-x)+1的图象恒过(2,1)点;
设一次函数的解析式为f(x)=kx+b(k≠0),
∵一次函数的图象经过点(1,3)和(2,1),
∴$\left\{\begin{array}{l}k+b=3\\ 2k+b=1\end{array}\right.$,
解得:$\left\{\begin{array}{l}k=-2\\ b=5\end{array}\right.$,
∴f(x)=-2x+5,
故答案为:-2x+5

点评 本题考查的知识点是待定系数法,求解函数的解析式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果质点A按规律s=3t2运动,则在t=2时的瞬时速度是(  )
A.4B.6C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面上四点:A(4,3),B(5,2),C(1,0),D(2,3)
(1)证明:A、B、C、D四点共圆;
(2)已知点N是(1)中圆上的一个动点,点P(6,0),点Q(x,y)是线段PN的三等分点且距点P近一些,求点Q的坐标满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式$\frac{1}{x-2}$>1的解集为{x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$($\frac{π}{2}$<θ<π),则tanθ=(  )
A.$-\frac{5}{12}$B.$\frac{5}{12}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=ax3+bx+c的图象关于原点对称且过点(1,1),(2,26).
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间;
(3)设P为函数f(x)(x∈(0,+∞))图象上一点,求点P到直线y=9x-10的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过点F(0,1),且斜率为k的直线l与抛物线E:x2=4y相交于A,B两点,与圆F:x2+(y-1)2=1相交于C,D两点,其中,点A,C在第一象限.
(1)求|AC|×|BD|的值;
(2)过点C作圆F的切线l,当$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$时,求直线l1在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log3x+$\frac{1}{2}$的定义域为[1,9]求y=[f(x)]2-f(x2)的最大、最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.由曲线y=x2和直线x=0,x=2,y=t2,t∈[0,2]围成的封闭图形的面积记为S.
(1)用t表示S.
(2)求S的最大值和最小值.

查看答案和解析>>

同步练习册答案