精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x2-4x+1,x≥0
-2x2-4x+1,x<0
,A={x|t≤x≤t+1},B={x||f(x)|≥1},若集合A∩B只含有一个元素,则实数t的取值范围是
0<t<1
0<t<1
分析:首先整理集合B,分两种情况来写出不等式,把含有绝对值的不等式等价变形,得到一元二次不等式,求出不等式的解集,进一步求出集合B的范围,根据两个集合只有一个公共元素,得到t的值.
解答:解:∵f(x)=
2x2-4x+1,x≥0
-2x2-4x+1,x<0

要解|f(x)|≥1,需要分类来看,
当x≥0时,|2x2-4x+1|≥1
∴2x2-4x+1≥1或2x2-4x+1≤-1
∴x≥2或x≤0或x=1
∵x≥0
∴x≥2或x=1或x=0.
当x<0时,|-2x2-4x+1|≥1
∴-2x2-4x+1≥1或-2x2-4x+1≤-1
∴-2≤x≤0或x
2
-1
或x≤-1-
2

∵x<0
∴-2≤x<0或x≤-1-
2

综上可知B={x|-2≤x≤0或x≤-1-
2
或x≥2或x=1}
∵集合A∩B只含有一个元素,
∴t>0且t+1<2
∴0<t<1
故答案为:0<t<1
点评:本题考查集合关系中的参数取值问题,考查一元二次不等式的解法,本题解题的关键是对于集合B的整理,过程比较繁琐,这里是一个易错点,容易忘记x本身的取值,本题是一个难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案