精英家教网 > 高中数学 > 题目详情

【题目】中,点,角的内角平分线所在直线的方程为边上的高所在直线的方程为.

1)求点的坐标;

2)求的内切圆圆心.

【答案】1.2

【解析】

1)根据题意可得的斜率为,从而可得直线的方程;将联立求出点的坐标,再根据点关于直线的对称点在直线上,求出直线的方程,将的方程与的方程联立即可求出点的坐标.

2)内切圆圆心为三角形内角平分线的交点,设内切圆圆心为,利用点到直线的距离公式可得,从而可求出,再根据直线轴的交点为,即可求得.

1)由题意知的斜率为,又点

∴直线的方程为,即.

解方程组,得

∴点的坐标为.

的内角平分线所在直线的方程为

∴点关于直线的对称点在直线上,

∴直线的方程为,即

解方程组,得

∴点的坐标为.

2)内切圆圆心为三角形内角平分线的交点

∴设内切圆圆心为

解得:

又直线轴的交点为

结合图形可知:舍去

的内切圆圆心为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某地一天从时的温度变化曲线近似满足函数.

(1)求该地区这一段时间内温度的最大温差.

(2)若有一种细菌在之间可以生存,则在这段时间内,该细菌最多能存活多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,且为棱的中点,作于点.

1)证明:平面

2)若面与面所成二面角的大小为,求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过市场调查,得到某种产品的资金投入(单位:万元)与获得的利润(单位:千元)的数据,如表所示

资金投入

2

3

4

5

利润

2

3

5

6

1)根据上表提供的数据,用最小二乘法求线性回归直线方程

2)该产品的资金投入每增加万元,获得利润预计可增加多少千元?若投入资金万元,则获得利润的估计值为多少千元?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的直角坐标为,直线与曲线的交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

是函数的极值点,求曲线在点处的切线方程;

若函数在区间上为单调递减函数,求实数a的取值范围;

mn为正实数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)设数列的前n项和为,数列满足:,且数列的前

n项和为.

(1) 的值;

(2) 求证:数列是等比数列;

(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.

查看答案和解析>>

同步练习册答案