精英家教网 > 高中数学 > 题目详情
2.若A={y|y=2x},B={y|y=x2},则A∪B=[0,+∞).

分析 根据函数的性质求出集合A,B根据并集的定义进行求解即可.

解答 解:A={y|y=2x}={y|y>0},B={y|y=x2}={y|y≥0},
则A∪B={y|y≥0}=[0,+∞),
故答案为:[0,+∞).

点评 本题主要考查集合的基本运算,根据条件求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求方程$\sqrt{x}$=4-2x的近似解.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若1g(ab)=1,则lga2+1gb2等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c.已知$\overrightarrow{m}$=(cos$\frac{3A}{2}$,sin$\frac{3A}{2}$),$\overrightarrow{n}$=(cos$\frac{A}{2}$,sin$\frac{A}{2}$).
(1)若|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{3}$,求角A的大小;若函数f(x)=5sin(2x-$\frac{π}{6}$)的图象向右平移A个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心;
(2)若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-2a|$\overrightarrow{m}$+$\overrightarrow{n}$|的最小值是-$\frac{3}{2}$,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若tanA=2,则sin($\frac{3π}{2}$+2A)=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知实数x,y满足:|x-y|<1,|2x+y|<1求证:|y|<1;
(2)已知a>b>c>d,求证:$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{1}{c-d}$≥$\frac{9}{a-d}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.连续抛掷骰子,记下每次面朝上的点数,若出现三个不同的数就停止,问抛掷5次停止时,会出现不同的结果种数位 (  )
A.420B.840C.720D.640

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为(  )
A.($\frac{{e}^{2}+1}{e}$,+∞)B.(-∞,-$\frac{{e}^{2}+1}{e}$)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知定义在R上的函数f(x)满足f(x)•f(x+2)=13,则f(x)的一个周期为4.

查看答案和解析>>

同步练习册答案