精英家教网 > 高中数学 > 题目详情
10.已知y=ax-1-2(a>0且a≠1)恒过定点P,则P点的坐标为(1,-1).

分析 根据指数函数过定点的性质,即a0=1恒成立,即可得到结论.

解答 解:∵y=ax-1-2,
∴当x-1=0时,x=1,
此时y=1-2=-1,
即函数过定点(1,-1).
故答案为:(1,-1).

点评 本题主要考查指数函数的图象和性质,直接解方程即可.比较基础

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2sinx-1-m在x∈[$\frac{π}{3}$,$\frac{7π}{6}$]上有零点,则实数m的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设p:实数x满足x2-4ax+3a2<0,a<0.q:实数x满足x2-x-6≤0.且?p是?q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,四面体PABC中,BC=BP=1,AC=AP=$\sqrt{3}$,AB=2,将△PAB沿直线AB翻折至△P1AB,使点A,P1,B,C在同一平面内(如图2),点M为PC中点.
(1)求证:直线PP1∥平面MAB;
(2)求证:PC⊥AB;
(3)求直线PA与平面P1PC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某学生参加3个项目的体能测试,若该生第一个项目测试过关的概率为$\frac{4}{5}$,第二个项目、第三个项目测试过关的概率分别为x,y(x>y),且不同项目是否能够测试过关相互独立,记ξ为该生测试过关的项目数,其分布列如下表所示:
ξ0123
P$\frac{6}{125}$ab$\frac{24}{125}$
(1)求该生至少有2个项目测试过关的概率;
(2)求ξ的数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正方体ABCD-A1B1C1D1的棱长为4,点E、F、G、H分别在棱CC1、DD1、BB1、BC上,且CE=$\frac{1}{2}$CC1,DF=BG=$\frac{1}{4}$DD1,BH=$\frac{1}{2}$BC,求AH与平面AFEG的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若向量$\overrightarrow a$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“y=sin(2x+φ)关于y轴对称”的(  )条件是“$φ=\frac{π}{2}$”(  )
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l的方程:2x+y-7=0,则l的斜率是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案