【题目】若函数对定义城内的每一个值,在其定义域内都存在唯一的,使得成立,则称该函数为“函数”.
(1)判断函数是否为“函数”,并说明理由;
(2)若函数在定义域上为“函数”,求的取值范围;
(3)已知函数在定义域上为“函数”.若存在实数,使得对任意的,不等式都成立,求实数的取值范围.
【答案】(1)不是,理由见解析;
(2);
(3)或;
【解析】
(1)通过列举的方式可判断不是反函数;
(2)由函数在定义域上为“函数”可得,,
可代换为,结合导数可求得范围;
(3)由“函数”定义可先求证函数在上单调,且,求得参数,由对于任意实数恒成立整理得,变形成关于的二次不等式,再令进一步求得值即可
(1)不是为“函数”.
若,当或时,满足,
此时不唯一,所以不是为“函数”.
(2)因为函数在为増函数,且在上为“函数”,
所以,即.
又因为,所以.
所以.
令,则,
因为,所以,所以在上单调递减,
所以,即.
(3)若图像对称轴,设,且,关于对称,
此时,,由条件可知,存在,使,这与“函数”定义矛盾.
所以在上单调,且,
由,得,解得或.
检验:在上单调,所以.
不等式即,
整理得,由题意知,上式对任意恒成立.
得,
整理得,由题意知,存在使得上式成立,
所以或.
解得或.
科目:高中数学 来源: 题型:
【题目】在正方体ABCDA1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线( )
A.不存在B.有且只有两条C.有且只有三条D.有无数条
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且满足:
(1)证明:是等比数列,并求数列的通项公式.
(2)设,若数列是等差数列,求实数的值;
(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数).
(1)求函数的极值;
(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:
①若,,则,为异面直线; ②若,,,则;
③若,,则; ④若,,,则.
则上述命题中真命题的序号为( )
A.①②B.③④C.②D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的奇函数,满足,下面四个关于函数的说法:①存在实数,使关于的方程有个不相等的实数根;②当时,恒有;③若当时,的最小值为,则;④若关于的方程和的所有实数根之和为零,则.其中说法正确的有______.(将所有正确说法的标号填在横线上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.
(Ⅰ)求证:AB⊥平面ADC;
(Ⅱ)若AD=2,直线CA与平面ABD所成角的正弦值为,求二面角E-AD-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com