精英家教网 > 高中数学 > 题目详情

【题目】已知曲线 .
(1)试求曲线C在点 处的切线方程;
(2)试求与直线 平行的曲线C的切线方程.

【答案】
(1)解:∵ ,∴ ,求导数得

∴切线的斜率为

∴所求切线方程为 ,即2x-y-2=0


(2)解:设与直线 平行的切线的切点为

则切线的斜率为

又∵所求切线与直线 平行,∴

解得 ,代入曲线方程 得切点为 ,∴所求切线方程为


【解析】(1)由导数的运算性质求出原函数的导函数,代入数值求出结果即为切线的斜率再利用直线的点斜式求出直线的方程。(2)根据题意求出原函数的导函数代入数值求出结果即为直线的斜率,利用两条直线平行斜率相等即可求出切点的坐标,代入到直线的方程求出即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100


(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:K2=

P(K2>k0

0.10

0.05


0.01

0.005

k0

2.706

3.841


6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(2x﹣m)的定义域为集合A,函数g(x)= 的定义域为集合B.
(Ⅰ)若BA,求实数m的取值范围;
(Ⅱ)若A∩B=,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题“非空集合 中的元素都是集合 中的元素”是假命题,
那么下列命题中真命题的个数为( )
中的元素都不是 中的元素 ② 中有不属于 的元素
中有属于 的元素 ④ 中的元素不都是 中的元素
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期为π.
(Ⅰ)当x∈[0, ]时,求f(x)的最大值;
(Ⅱ)请用“五点作图法”画出f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 上的一点 的横坐标为 ,焦点为 ,且 ,直线 与抛物线 交于 两点.
(1)求抛物线 的方程;
(2)若 轴上一点,且△ 的面积等于 ,求点 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,雾霾日趋严重,我们的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题.某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产该型号空气净化器x(百台),其总成本为P(x)(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本).销售收入Q(x)(万元)满足Q(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据以述统计规律,请完成下列问题:
(1)求利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)工厂生产多少百台产品时,可使利润最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的定义域是;若函数 的最大值为 ,则实数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(1,2,-1),B(2,0,2).
(1)在x轴上求一点P,使|PA|=|PB|;
(2)若xOz平面内的点M到点A的距离与到点B的距离相等,求点M的坐标满足的条件.

查看答案和解析>>

同步练习册答案