精英家教网 > 高中数学 > 题目详情

【题目】水是万物之本、生命之源,节约用水,从我做起.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

【答案】(1);(2)万;(3)吨.

【解析】试题分析:(1)根据各矩形面积和为可求得的值;(2)用水不低于吨的人分布在后三组,求出后三组的面积和即是用水不低于顿的人的概率,与总数相乘可得结果;(3)根据直方图初步判定,再利用左边矩形面积和等于可得结果.

试题解析:

(1)由概率统计相关知识,各组频率之和的值为1.∵频率=(频率/组距)组距

,∴

(2)由图,不低于3吨人数所占百分比为,∴全市月均用水量不低于3吨的人数为:(万)

(3)由图可知,月均用水量小于2.5吨的居民人数所占百分比为:,即的居民月均用水量小于2.5吨,同理,88%的居民月均用水量小于3吨,故,假设月均用水量平均分布,则(吨).注:本次估计默认组间是平均分布,与实际可能会产生一定误差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1求函数的极值点;

2若函数在区间[2,6]内有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱的中点在线段

1求证

2是否存在点使二面角等于若存在的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求不等式的解集;

2)若对一切,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人下棋比赛,规定谁比对方先多胜两局谁就获胜,比赛立即结束;若比赛进行完6局还没有分出胜负则判第一局获胜者为最终获胜且结束比赛.比赛过程中,每局比赛甲获胜的概率为,乙获胜的概率为,每局比赛相互独立.求:(1)比赛两局就结束且甲获胜的概率;(2)恰好比赛四局结束的概率;(3)在整个比赛过程中,甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—1:几何证明选讲

如图,已知圆的外接圆, ,边上的高,是圆的直径,过点作圆的切线交的延长线于点.

求证:

,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为且椭圆上一点到其两焦点的距离之和为

1求椭圆的标准方程

2设直线与椭圆交于不同两点若点满足的值

查看答案和解析>>

同步练习册答案