分析 利用双曲线标准方程,求出焦距,再利用双曲线的定义和余弦定理能求出cos∠F1PF2.
解答 解:由双曲线x2-4y2=4,即$\frac{{x}^{2}}{4}-{y}^{2}$=1得c2=5,
∴4c2=20
设|PF1|=d1,|PF2|=d2,则d1-d2=4…①
由已知条件:d1+d2=6…②
由①、②得,d12+d22=26,d1d2=5
在△F1PF2中,由余弦定理得,cos∠F1PF2=$\frac{26-20}{2×5}$=$\frac{3}{5}$
故答案为:$\frac{3}{5}$.
点评 解决焦点三角形问题一般要用到两种知识,一是曲线定义,本题中由双曲线定义可得焦半径之差,已知有焦半径之积,故可求出焦半径或其关系;二是余弦定理,利用解三角形知识求角或面积.
科目:高中数学 来源: 题型:选择题
A. | {2,4} | B. | {2,4,6} | C. | {0,2,4} | D. | {0,2,4,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2x+y+1=0 | B. | 2x+y-1=0 | C. | 2x-y-1=0 | D. | 2x-y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 16 | B. | 15 | C. | 17 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com