精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

【答案】(1);(2)

【解析】

分析:(1)由频率分布表中频数与频率的对应关系,可以求出并补全频率分布表,取每组中点为再由即可求出数学平均分的估计值;

(2)依题意成绩小于分的学生三种分组人数比为所以用分层抽样的方法抽取5名学生中有1人,1人,3人,通过枚举法求出5名学生中至少有一个学生的数学成绩是在的概率.

详解:解:(1)

.

(2)至少有一个学生的数学成绩是在为事件,分层抽样从中抽1,中抽1,中抽3

从这5人中选2人共有10种不同选法: .

其中中至少有一个抽中的情况有9种,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )

①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;

②用简单随机抽样的方法从新生中选出100人;

③西部地区学生小刘被选中的概率为

④中部地区学生小张被选中的概率为

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为正方形, 底面为棱的中点.

1)证明:

2)求直线与平面所成角的正弦值;

3)若中点,棱上是否存在一点,使得,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地级市共有中学生,其中有学生在年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助元、元、元.经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有转为一般困难学生,特别困难的学生中有转为很困难学生.现统计了该地级市年到年共年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份时代表年,时代表年,……依此类推,且(单位:万元)近似满足关系式.(年至年该市中学生人数大致保持不变)

(1)估计该市年人均可支配年收入为多少万元?

(2)试问该市年的“专项教育基金”的财政预算大约为多少万元?

附:对于一组具有线性相关关系的数据,…,,其回归直线方程的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共名男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成八组,第一组;第二组第八组,如图是按上述分组方法得到的频率分布直方图的一部分,若第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

)估计这所学校高三年级全体男生身高以上(含)的人数.

)求第六组、第七组的频率并补充完整频率分布直方图(铅笔作图并用中性笔描黑).

)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足的事件概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

同步练习册答案