【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:
分组 | 频数 | 频率 |
合计 |
(1)求的值和实验班数学平均分的估计值;
(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.
科目:高中数学 来源: 题型:
【题目】某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )
①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;
②用简单随机抽样的方法从新生中选出100人;
③西部地区学生小刘被选中的概率为;
④中部地区学生小张被选中的概率为
A. ①④ B. ①③ C. ②④ D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x-1+x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面为正方形, 底面, 为棱的中点.
(1)证明: ;
(2)求直线与平面所成角的正弦值;
(3)若为中点,棱上是否存在一点,使得,若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地级市共有中学生,其中有学生在年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助元、元、元.经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有转为一般困难学生,特别困难的学生中有转为很困难学生.现统计了该地级市年到年共年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份取时代表年,取时代表年,……依此类推,且与(单位:万元)近似满足关系式.(年至年该市中学生人数大致保持不变)
(1)估计该市年人均可支配年收入为多少万元?
(2)试问该市年的“专项教育基金”的财政预算大约为多少万元?
附:对于一组具有线性相关关系的数据,,…,,其回归直线方程的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某学校高三年级共名男生中随机抽取名测量身高,测量发现被测学生身高全部介于和之间,将测量结果按如下方式分成八组,第一组;第二组,,第八组,如图是按上述分组方法得到的频率分布直方图的一部分,若第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
()估计这所学校高三年级全体男生身高以上(含)的人数.
()求第六组、第七组的频率并补充完整频率分布直方图.(铅笔作图并用中性笔描黑).
()若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为、,求满足的事件概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的上下两个焦点分别为, ,过点与轴垂直的直线交椭圆于、两点, 的面积为,椭圆的离心力为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知为坐标原点,直线: 与轴交于点,与椭圆交于, 两个不同的点,若存在实数,使得,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com