精英家教网 > 高中数学 > 题目详情
5.连续抛掷两次骰子,所得的点数之和能被3整除的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{11}{36}$D.$\frac{5}{6}$

分析 本题是一个古典概型,试验发生包含的事件是一颗骰子抛掷2次向上的点数,共有36种结果,满足条件的事件是点数之和是3的倍数,可以列举出结果,根据古典概型概率公式得到结果.

解答 解:由题意知本题是一个古典概型,
试验发生包含的事件是一颗骰子抛掷2次,观察向上的点数,共有36种结果,
满足条件的事件是点数之和是3的倍数,可以列举出有12种结果,分别为:
(1,2),(1,5),(2,1),(2,4),
(3,3),(3,6),(5,1),(5,4),
(4,2),(4,5),(6,3),(6,6),
根据古典概型概率公式得到P=$\frac{12}{36}$=$\frac{1}{3}$,
故选:B

点评 本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.电视台有一个闯关游戏节目.参加游戏的每支队伍由父、母与小孩三人组成,规则如下:每队三次机会,每次只派一人上场,在规定时间内答对10题则过关,否则淘汰,再派另一个人上场,若三人有一人通过则全队通过.某家庭各自过关的概率分别为P1(父亲)、P2(母亲)、P3(小孩),P1、P2、P3互不相等且各自能否过关互不影响.
(1)该家庭闯关能否成功是否与上场顺序有关?并说明理由;
(2)若按父、母、小孩的顺序上场,求出场人数x的分布列及均值;
(3)若P3<P2<P1<1,分析以怎样的顺序上场可使所需出场人数的期望最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.$f(x)=\left\{\begin{array}{l}1,\;\;\;\;\;x>0\\ 0,\;\;\;\;\;x=0\\-1,\;\;x<0,\;\;\end{array}\right.$g(x)=x2f(x-1),
(1)求g(x)的解析式;
(2)画出函数g(x)的图象,并写出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向在C处追赶上渔船乙,刚好用2小时.则BC=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,执行其程序框图,则输出S的值等于(  )
A.15B.105C.245D.945

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC的一个内角为120°,并且三边长度构成以首项为3的等差数列,则△ABC的最小角的正弦值为$\frac{{3\sqrt{3}}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等差数列{an}中,已知a2+a9=7,则3a5+a7=14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业在2015年年底共有职工2000人,本年企业利润为3000万,从2016年起计划每年利润增加100万,职工每年净增a人,设从2016年起的第x年(2016年为第一年)该企业人均利润为y万元.
(1)写出y与x之间的函数关系式;
(2)今后为使企业人均利润每年都是增长,那么该企业每年人口的净增不能超过多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.命题“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$<0”
B.命题“若sinx=siny,则x=y”的逆否命题为真命题
C.若命题p,¬q都是真命题,则命题“p∧q”为真命题
D.命题“若△ABC为锐角三角形,则有sinA>cosB”是真命题

查看答案和解析>>

同步练习册答案