【题目】如图,已知抛物线,在轴正半轴上有一点,过点作直线,分别交抛物线于点,过点作垂直于轴分别交于点.当,直线的斜率为1时,.
(1)求抛物线的方程;
(2)判断是否为定值,若是,求出此定值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆的直径,点是圆上异于的点,直线平面,分别是的中点.
(1)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;
(2)设(1)中的直线与圆的另一个交点为,且点满足.记直线与平面所成的角为,异面直线与所成的角为,二面角的大小为,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆柱OO1底面半径为1,高为π,ABCD是圆柱的一个轴截面.动点M从点B出发沿着圆柱的侧面到达点D,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面ABCD绕着轴OO1逆时针旋转θ(0<θ<π)后,边B1C1与曲线Γ相交于点P.
(1)求曲线Γ长度;
(2)当时,求点C1到平面APB的距离;
(3)是否存在θ,使得二面角D﹣AB﹣P的大小为?若存在,求出线段BP的长度;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数,),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)设曲线与曲线的交点分别为,求的最大值及此时直线的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com