精英家教网 > 高中数学 > 题目详情
14.设数列{an}的前n项和为Sn,且满足Sn+2an=3(n∈N*),设数列{bn}满足b1=a1,bn=$\frac{2{b}_{n-1}}{{b}_{n-1}+2}$(n≥2).
(1)求数列{an}、{bn}的通项公式;
(2)设${c_n}=\frac{a_n}{b_n}$求数列{cn}的前n项和Tn

分析 (1)Sn+2an=3(n∈N*),以及Sn-1+2an-1=3(n∈N*),两式相减得到数列{an}的递推关系式,求通项公式;由已知bn=$\frac{2{b}_{n-1}}{{b}_{n-1}+2}$(n≥2)变形得到数列{$\frac{1}{{b}_{n}}$}是等差数列,从而求得通项公式;
(2)首先得到数列{cn}的通项公式,利用错位相减法求其前n项和.

解答 解:(1)数列{an}的前n项和为Sn满足Sn+2an=3(n∈N*),
所以Sn-1+2an-1=3(n∈N*),
两式相减得到$\frac{{a}_{n}}{{a}_{n-1}}=\frac{2}{3}$,且a1=1,
所以数列{an}是以1为首项$\frac{2}{3}$为公比的等比数列,
以数列{an}的通项公式为an=$(\frac{2}{3})^{n-1}$,
又bn=$\frac{2{b}_{n-1}}{{b}_{n-1}+2}$(n≥2).整理得$\frac{1}{{b}_{n}}-\frac{1}{{b}_{n-1}}=\frac{1}{2}$,
所以数列{$\frac{1}{{b}_{n}}$}是以1为首项$\frac{1}{2}$为公差的等差数列,所以$\frac{1}{{b}_{n}}$=$\frac{1}{2}$n$+\frac{1}{2}$.所以bn=$\frac{2}{n+1}$,
(2)设${c_n}=\frac{a_n}{b_n}$=$\frac{1}{2}•(\frac{2}{3})^{n-1}•(n+1)$,
数列{cn}的前n项和Tn=$\frac{1}{2}$(1×2$+\frac{2}{3}×3$$+(\frac{2}{3})^{2}×4$+…+$(\frac{2}{3})^{n-1}(n+1)$)①
$\frac{2}{3}{T}_{n}$=$\frac{1}{2}$($\frac{2}{3}×2+(\frac{2}{3})^{2}×3+(\frac{2}{3})^{3}×4$+…+$(\frac{2}{3})^{n-1}n+(\frac{2}{3})^{n}(n+1)$)②
②-①得$\frac{1}{3}{T}_{n}$=$\frac{1}{2}$(2+$\frac{2}{3}+(\frac{2}{3})^{2}+$…+$(\frac{2}{3})^{n-1}$-$(\frac{2}{3})^{n}(n+1)$)=$\frac{1}{2}$(2+$\frac{\frac{2}{3}[1-(\frac{2}{3})^{n-1}]}{1-\frac{2}{3}}$-$(\frac{2}{3})^{n}(n+1)$),
所以Tn=6-$(\frac{2}{3})^{n}\frac{3(n+4)}{2}$.

点评 本题考查了等差数列和等比数列通项公式的求法以及利用错位相减法求数列的前n 项和;属于常规题;注意掌握方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在[-1,1]上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A(-1,0),B(1,0),动点M满足∠AMB=2θ,|$\overrightarrow{AM}$|•|$\overrightarrow{BM}$|•cos2θ=3,设M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过A的直线l1与曲线C交于E、F两点,过B与l1平行的直线l2与曲线C交于G、H两点,求四边形EFGH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给定有穷单调递增数列{xn}(n∈N*),数列{xn}至少有两项,且xi≠0(1≤i≤n),定义集合A={(x,y)|1≤i,j≤n,且i,j∈N*}.若对任意点A1∈A,存在A2∈A使得OA1⊥OA2(O为坐标原点),则称数列{xn}具有性质P.
(1)给出下列四个命题,其中正确是①③④(填上所有正确命题的序号)
①数列{xn}:-2,2具有性质P;
②数列{xn}:-2,-1,1,2具有性质P;
③数列{xn}具有性质P,则{xn}中一定存在两项xi,xj,使得xi+xj=0;
④数列{xn}具有性质P,x1=-1,x2>0,且xn>1(n≥3),则x2=1.
(2)若数列{xn}只有2015项且具有性质P,x1=-1,x3=2,则{xn}的所有S2015=22016-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=|x2-2x-3|,则f(x)在(-1,+∞)上的减区间为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=-x2+|x|的递减区间是[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知e为自然对数的底数,若对任意的x1∈[0,1],总存在唯一的x2∈[-1,1],使得x1+x22•e${\;}^{{x}_{2}}$-a=0成立,则实数a的取值范围是(  )
A.[1,e]B.(1,e]C.(1+$\frac{1}{e}$,e]D.[1+$\frac{1}{e}$,e]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.对定义在[1,+∞)上的函数f(x)和常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“凯森数对”.
(1)若(1,1)是f(x)的一个“凯森数对”,且f(1)=3,求f(16);
(2)已知函数f1(x)=log3x与f2(x)=2x的定义域都为[1,+∞),问它们是否存在“凯森数对”?分别给出判断并说明理由;
(3)若(2,0)是f(x)的一个“凯森数对”,且当1<x≤2时,f(x)=$\sqrt{2x-{x^2}}$,求f(x)在区间(1,+∞)上的不动点个数.

查看答案和解析>>

同步练习册答案