精英家教网 > 高中数学 > 题目详情

【题目】若函数的定义域为,满足对任意,有.则称为“形函数”;若函数定义域为恒大于0,且对任意,恒有,则称为“对数形函数”.

1)当时,判断是否是“形函数”,并说明理由;

2)当时,判断是否是“对数形函数”,并说明理由;

3)若函数形函数,且满足对任意都有,问是否是“对数形函数”?请加以证明,如果不是,请说明理由.

【答案】1)不是;详见解析(2)是;详见解析(3)是,详见解析

【解析】

1)由,作差化简,得到当同号时,此时,即可得到结论;

2)因为恒成立,可利用分析法和函数的新定义,作出判定和证明.

3)由的新定义和,得到,进而得到,再根据对数的运算性质,即可求解.

1)由题,函数

同号时,此时

此时不满足,所以不是型函数.

2)因为恒成立,

要证对任意

即证对任意

即证对任意

因为

所以是对数型函数

3)函数是对数型函数.证明如下:

因为型函数,所以对任意,有

又由对任意,有,所以

所以,所以

所以

所以是对数型函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

的解析式;

时,的值域;

,若对任意的,总有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点与抛物线的焦点重合,且椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆的右顶点,过点作两条直线分别与椭圆交于另一点,若直线的斜率之积为,求证:直线恒过一个定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程是.

(1)求的值及函数的最大值;

(2)若实数满足.

(i)证明:

(ii)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点,右焦点分别为,右准线为

(1)若直线上不存在点,使为等腰三角形,求椭圆离心率的取值范围;

(2)在(1)的条件下,当取最大值时,点坐标为,设是椭圆上的三点,且,求:以线段的中心为原点,过两点的圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点到抛物线焦点的距离为

(1)求的值;

(2) 是抛物线上异于的两个不同点,过轴的垂线,与直线交于点,过轴的垂线,与直线交于点,过轴的垂线,与直线分别交于点

求证:①直线的斜率为定值;

是线段的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

同步练习册答案