精英家教网 > 高中数学 > 题目详情

已知函数,其中的导函数.
(1)对满足的一切的值,都有,求实数的取值范围;
(2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.

(1)
(2)

解析试题分析:解:(1)由题意,得

中任意值,恒有,即

解得
时,对满足的一切的值,都有
(2)
①当时,的图象与直线只有一个公共点;
②当时,列表:















极大值

极小值


的值域是,且在上单调递增,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若曲线在点处与直线相切,求的值.
(Ⅱ)若曲线与直线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)求函数的单调区间
(2)若关于的不等式对一切(其中)都成立,求实数的取值范围;
(3)是否存在正实数,使?若不存在,说明理由;若存在,求取值的范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;
(2)求的单调区间;
(3)若当时恒有成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(e为自然对数的底数).
(1)求函数的单调增区间;
(2)设关于x的不等式的解集为M,且集合,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数.
(Ⅰ) 若处取得的极值为,求的值;
(Ⅱ)若在区间上为减函数,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在(1,2)上是增函数,在(0,1)上是减函数。
的值;
时,若内恒成立,求实数的取值范围;
求证:方程内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;
是偶函数;
处的切线与直线垂直.
(I)求函数的解析式;
(II)设,若存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,其中a>0,
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围。

查看答案和解析>>

同步练习册答案