精英家教网 > 高中数学 > 题目详情

如图,棱柱ABCD-A1B1C1D1的所有棱长都为2,AC∩BD=O,则棱AA1与底面ABCD所成的角为60°,A1O⊥平面ABCD,F为DC1的中点.
(1)证明:BD⊥AA1
(2)证明:OF∥平面BCC1B1
(3)求二面角D-AA1-C的余弦值.

解(1)因为棱柱ABCD-A1B1C1D1的所有棱长都为2,
所以四边形ABCD为菱形,BD⊥AC
又A1O⊥平面ABCD,BD?平面ABCD,
所以A1O⊥BD.
又因为AC∩A1O=O,AC,A1O?平面A1ACC1
所以BD⊥平面A1ACC1
因为AA1?平面A1ACC1
所以BD⊥AA1
(2)连接BC1,因为四边形ABCD为菱形,AC∩BD=O,
所以O是BD的中点
又因为点F为DC1的中点,
所以在△DBC1中,OF∥BC1
因为OF?平面BCC1B1,BC1?平面BCC1B1
所以OF∥平面BCC1B1
(3)以O为坐标系的原点,分别以OA,OB,OA1所在直线为x,y,z轴建立空间直角坐标系.因为侧棱AA1与底面ABCD所成角为60°,A1O⊥平面ABCD.
所以∠A1AO=60°,在Rt△A1AO中,可得
在Rt△AOB中,.
设平面AA1D的法向量为

所以
因为=(-1,0,),

可设
又因为BD⊥平面A1ACC1,所以平面A1ACC1的法向量为,∴
因为二面角D-AA1-C为锐角,
故二面角D-AA1-C的余弦值是
分析:(1)先证出BD与面A1ACC1内的两条相交直线AC,AA1垂直,从而证得BD⊥平面A1ACC1,∴BD⊥AA1
(2)先证出OF∥BC1,再由线面平行的判定定理可证OF∥平面BCC1B1
(3)以O为坐标系的原点,分别以OA,OB,OA1所在直线为x,y,z轴建立空间直角坐标系,求出平面AA1D的法向量,平面A1ACC1的法向量,通过两法向量的夹角去解.
点评:本题考查直线和直线,直线和平面位置关系及其判定,二面角求解,考查转化的思想方法(空间问题平面化)空间想象能力,计算能力.利用空间向量的知识,则使问题论证变成了代数运算,使人们解决问题更加方便.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,且∠A1AD=∠A1AB=60°.
①求证四棱锥A1-ABCD为正四棱锥;
②求侧面A1ABB1与截面B1BDD1的锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AC∩BD=O,侧棱AA1⊥BD,点F为DC1的中点.
(I) 证明:OF∥平面BCC1B1
(II)证明:平面DBC1⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.?
(1)证明:BD⊥AA1;?
(2)证明:平面AB1C∥平面DA1C1
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1CC1⊥平面ABCD,∠A1AC=60°
(1)求二面角D-A1A-C的大小.
(2)求点B1到平面A1ADD1的距离
(3)在直线CC1上是否存在P点,使BP∥平面DA1C1,若存在,求出点P的位置;若不存在,说出理由.

查看答案和解析>>

同步练习册答案