精英家教网 > 高中数学 > 题目详情
设命题P:函数y=loga(x+1)在(0,+∞)为减函数.命题Q:曲线y=x2+(2a-3)x+1与x轴有两个不同的交点.若“P且Q”为假,“P或Q”为真,求a的范围.
分析:当P为真时,0<a<1.当Q为真时,a>
5
2
或a<
1
2
.当P为真、Q为假时,求出a的范围;当P为假、Q为真时,
求出a的范围,把这几个a的范围取并集即得所求.
解答:解:当P为真时,0<a<1.当Q为真时,△=(2a-3)2-4>0,即 a>
5
2
a<
1
2

∵“P且Q”为假,“P或Q”为真,∴P与Q必是一真一假.
当P为真、Q为假时,则有  
0<a<1
 
1
2
≤a≤
5
2
,解得
1
2
≤a<1

当P为假、Q为真时,则有 
a≥1或a≤0
 
a>
5
2
, 或a<
1
2
,解得a>
5
2
 或a≤0.
综上可得
1
2
≤a<1
或a≤0或a>
5
2
点评:本题主要考查对数函数的单调性和特殊点,复合命题的真假,二次函数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空数集.设.f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(M);
(II)若P∩M=φ,a函数f(x)是定义在R上的单调递增函数,求集合P,M
(III)判断命题“若P∪M≠R,则.f(P)∪f(M)≠R”的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下面四个命题:
①曲线y=-x2+2x+4在点(1,5)处的切线的倾斜角为45°;
②已知直线l,m,平面α,β,若l⊥α,m?β,l⊥m,则α∥β;
③设函数f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
则f(x+1)一定是奇函数;
④如果点P到点A(
1
2
,0),B(
1
2
,2)
及直线x=-
1
2
的距离相等,那么满足条件的点P有且只有1个.
其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

现有下面四个命题:
①曲线y=-x2+2x+4在点(1,5)处的切线的倾斜角为45°;
②已知直线l,m,平面α,β,若l⊥α,m?β,l⊥m,则α∥β;
③设函数f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
则f(x+1)一定是奇函数;
④如果点P到点数学公式及直线数学公式的距离相等,那么满足条件的点P有且只有1个.
其中正确命题的序号是________.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空数集.设.f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(M);
(II)若P∩M=φ,a函数f(x)是定义在R上的单调递增函数,求集合P,M
(III)判断命题“若P∪M≠R,则.f(P)∪f(M)≠R”的真假,并说明理由.

查看答案和解析>>

同步练习册答案