精英家教网 > 高中数学 > 题目详情
(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.
分析:(1)求出f′(x),令导函数等于0,求出根,判断根左右的单调性,最终确定极小值就是最小值,从而求得f(x)的最小值;
(2)构造一个函数g(x)=xlog2x-x+1,利用导数判断出g(x)在[1,+∞)上是增函数,确定出g(x)≥g(1)=0,即xlog2x≥x-1,再对其中的x进行取值,构造出所要证明的表达式,利用不等式的性质,即可证明出结论.
解答:(1)解:∵函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),
∴f′(x)=log2x-log2(1-x),
令f′(x)=0,解得x=
1
2

∴当x<
1
2
时,f′(x)=log2x-log2(1-x)<0,则f(x)在区间(0,
1
2
)上是减函数,
当x>
1
2
时,f′(x)=log2x-log2(1-x)>0,则f(x)在区间(
1
2
,+∞)上是增函数,
∴f(x)在x=
1
2
处取得最小值,f(
1
2
)=-1,
∴f(x)的最小值为-1.
(2)证明:构造函数g(x)=xlog2x-x+1,
∴g′(x)=log2x+
1
ln2
-1,则当x≥1时,log2x≥1,
1
ln2
-1>0,
∴当x≥1时,g′(x)>0,即g(x)在[1,+∞)上是增函数,
∴g(x)≥g(1)=0,即xlog2x-x+1≥0,
∴xlog2x≥x-1.
令x=2nPi,则有2nPilog2(2nPi)≥2nPi-1,两边同除以2n,可得,Pilog2(2nPi)≥Pi-
1
2n

P1log2(2nP1)≥P1-
1
2n
P2log2(2nP2)≥P2-
1
2n
P3log2(2nP3)≥P3-
1
2n
,…,P2nlog2(2nP2n)≥P2n-
1
2n

∴以上式子左右分别相加,可得P1log2(2nP1)+P2log2(2nP2)+…+P2nlog2(2nP2n)(P1-
1
2n
)+(P2-
1
2n
)+
…+P2n-
1
2n

化简可得,(P1+P2+…+P2n)log22n+P1log2P1+…+P2nlog2P2n≥(P1+P2+…+P2n)-2n
1
2n

P1+P2+…P2n=1,
log22n+P1log2P1+…+P2nlog2P2n≥0,
∴n+P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥0,
P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.
点评:本题考查了利用导数求函数的最值问题,同时考查了不等式的证明,关键在于如何构造出所要证明的不等式,这是一个难点.属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•虹口区二模)已知:函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=
g(x)
x

(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]时恒成立,求实数k的取值范围;
(3)如果关于x的方程f(|2x-1|)+t•(
4
|2x-1|
-3)=0有三个相异的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈S,f2(x)=x,则称f(x)是集合M的元素,例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素;
(2)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算a*b为:a*b=
a(a≤b)
b(a>b)
,例如1*2=1,2*1=1,设函数f(x)=sinx*cosx,则函数f(x)的最小正周期为
,使f(x)>0成立的集合为
(2kπ,2kπ+
π
2
)
(2kπ,2kπ+
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
4•2010x+2
2010x+1
+xcosx(-1≤x≤1)
,设函数f(x)的最大值是M,最小值是N,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=(3x2+x+1)(2x+3),求f′(x),f′(-1);
(2)设函数f(x)=x3-2x2+x+5,若f′(x°)=0,求x°的值.
(3)设函数f(x)=(2x-a)n,求f′(x).

查看答案和解析>>

同步练习册答案