【题目】己知函数.
(1)证明:当恒成立;
(2)若函数恰有一个零点,求实数的取值范围.
【答案】(1)见解析;(2)或
【解析】
(1)令,要证在上恒成立,只需证,;
(2)函数,定义域为,.对a分类讨论,研究函数的单调性及最值,以确定图象与x轴的交点情况.
(1)证明:令,
要证在上恒成立,
只需证,,
因为,
所以.
令,
则,
因为,所以,
所以在上单调递增,
所以,即,
因为,所以,所以,
所以在上单调递增,
所以,,
故在上恒成立.
(2)函数,定义域为,
.
①当时,无零点.
②当时,,所以在上单调递增,
取,则,(或:因为且时,所以.)
因为,所以,此时函数有一个零点.
③当时,令,解得.
当时,,所以在上单调递减;
当时,,所以在上单调递增.
所以 .
若,即时,
取,,即函数在区间上存在一个零点;
当时,因为,所以,
则有,,必然存在 ,使得,即函数在区间存在一个零点;
故当时,函数在上有两个零点,不符合题意.……11分
所以当时,要使函数有一个零点,必有,
即.
综上所述,若函数恰有一个零点,则或.
科目:高中数学 来源: 题型:
【题目】过双曲线的左焦点作圆的切线,切点为,延长交双曲线右支于点.若线段的中点为,为坐标原点,则与的大小关系是( )
A. B.
C. D. 无法确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是偶函数.
(1)求实数的值;
(2)当时,函数存在零点,求实数的取值范围;
(3)设函数,若函数与的图像只有一个公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图
注:年份代码1~7分别对应年份2010~2016
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请求出相关系数r,并用相关系数的大小说明y与t相关性的强弱;
(2)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.
附注:
参考数据:,,, .
参考公式:
相关系数
回归方程 中斜率和截距的最小二乘估计公式分别为:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根据7至11月份的数据,求出关于的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程,其中,参考数据: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com