精英家教网 > 高中数学 > 题目详情
空间直角坐标系中已知点P(0,0,
3
)和点C(-1,2,0),则在y上到P,C的距离相等的点M的坐标是(  )
A、(0,1,0)
B、(0,
1
2
,0)
C、(0,-
1
2
,0)
D、(0,2,0)
考点:空间两点间的距离公式
专题:空间位置关系与距离
分析:根据题意,设出点M的坐标,利用|MP|=|MC|,求出M的坐标.
解答: 解:根据题意,设点M(0,y,0),
∵|MP|=|MC|,
∴02+y2+(
3
)
2
=12+(y-2)2+02
即y2+3=1+y2-4y+4,
∴4y=8,
解得y=2,
∴点M(0,2,0).
故选:D.
点评:本题考查了空间直角坐标系中两点间的距离公式的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:sin
4
cos
4
+tan
11π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:f(x)=
x2+ax+b
x
,x∈(0,+∞)
(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;
(2)是否存在实数a,b,使f(x)同时满足下列二个条件:
①在(0,1)上是减函数,(1,+∞)上是增函数;
②f(x)的最小值是3,若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在过点(1,0)的直线与曲线y=x3和y=ax2+
15
4
x-9都相切,则a等于(  )
A、-1或-
25
64
B、-1或
21
4
C、-
7
4
或-
25
64
D、-
7
4
或7

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程|-x2+4x-3|=kx有三个实数解,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

由曲线|x|-|y|=|2x-3|所围成的图形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于(  )
A、-10B、-18
C、-26D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R,1≤a≤6.
(1)若a=2,求使f1(x)=f2(x)的x的值;
(2)若|f1(x)-f2(x)|=f2(x)-f1(x)对于任意的实数x恒成立,求a的取值范围;
(3)求函数g(x)=
f1(x)+f2(x)
2
-
|f1(x)-f2(x)|
2
在[1,6]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=2x+t被圆x2+y2=8截得的弦长大于等于
4
2
3
,则t的取值范围为     (  )
A、[-
8
5
3
8
5
3
]
B、(-
8
5
3
8
5
3
C、[
8
5
3
,+∞)
D、(-∞,
8
5
3

查看答案和解析>>

同步练习册答案