精英家教网 > 高中数学 > 题目详情
已知△ABC的三个内角A、B、C满足sinC=
3
(1-cosC)=2sin2A+sin(A-B).求A的大小.
由sinC=
3
(1-cosC),得sinC+
3
cosC=
3
,即2sin(C+
π
3
)=
3

∴sin(C+
π
3
)=
3
2
,∵
π
3
<C+
π
3
3
,∴C+
π
3
=
3
,C=
π
3
 ①.
又sinC=2sin2A+sin(A-B),而sinC=sin[π-(A+B)]=sin(A+B)
∴得出sinAcosB+cosAsinB=4sinAcosA+sinAcosB-cosAsinB
 移向化简整理得出cosA(sinB-2sinA)=0
∴cosA=0,或sinB-2sinA=0
若 cosA=0,则A=
π
2

若 sinB-2sinA=0则结合①即有sin(
3
-A)-2sinA=0,
展开化简整理
3
2
cosA-
3
2
sinA=0,∴tanA=
3
3
,∴A=
π
6

综上A=
π
2
,或A=
π
6
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的A、B、C及平面内一点P满足
PA
+
PB
+
PC
=
AB
,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A、B、C及平面内一点P,若
PA
+
PB
+
PC
=
AB
,则点P与△ABC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点ABC及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ满足:
AB
+
AC
=λ
AP
,则λ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知△ABC的三个顶点坐标分别为A(1,3)、B(3,1)、C(-1,0),求BC边上的高所在的直线方程.
(2)过椭圆
x2
16
+
y2
4
=1
内一点M(2,1)引一条弦,使得弦被M点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A,B,C及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ 满足:
AB
+
AC
AP
,则λ的值为(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步练习册答案