精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为, 直线过点.

(Ⅰ)若点到直线的距离为, 求直线的斜率;

(Ⅱ)为抛物线上两点, 不与轴垂直, 若线段的垂直平分线恰过点, 求证: 线段中点的横坐标为定值.

【答案】(Ⅰ) (Ⅱ)详见解析

【解析】

试题分析:)设直线l的方程为y=k(x-4),由已知,抛物线C的焦点坐标为(1,0),因为点F到直线l的距离为,所以,由此能求出直线l的斜率;)设线段AB中点的坐标为N,A,B,因为AB不垂直于x轴,所以直线MN的斜率为,直线AB的斜率为,直线AB的方程为,由此能够证明线段AB中点的横坐标为定值

试题解析:)由已知,x=4不合题意.设直线l的方程为y=k(x-4),

由已知,抛物线C的焦点坐标为(1,0),

因为点F到直线l的距离为

所以

解得,所以直线l的斜率为 .

() 设线段中点的坐标为, ,

因为不垂直于轴,

则直线的斜率为, 直线的斜率为,

直线的方程为,

联立方程

消去,

所以,

因为中点, 所以, ,

所以.即线段中点的横坐标为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 直线交椭圆 两点, 的周长为16 的周长为12.

1)求椭圆的标准方程与离心率;

(2)若直线与椭圆交于两点,且是线段的中点,求直线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体中, 的中点,如图所示.

(1) 证明: 平面;

(2) 求平面与平面所成锐二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn,且满足Sn2n12p(nN*).

(1)p的值及数列{an}的通项公式;

(2)若数列{bn}满足(3p)anbn,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,f(x)=2sin(xA)cosx+sin(BC)(x∈R),函数f(x)的图象关于点对称.

(1)当时,求f(x)的值域;

(2)若a=7且,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人为研究中学生的性别与每周课外阅读量这两个变量的关系随机抽查了100名中学生得到频率分布直方图(如图所示)其中样本数据的分组区间为:[0,2](2,4](4,6](6,8](8,10](10,12]

()假设同一组中的每个数据可用该组区间的中点值代替试估计样本中的100名学生周课外阅读时间的平均数.

()在样本数据中20位女生的每周课外阅读时间超过4小时15位男生的每周课外阅读时间没有超过4小时.请画出每周课外阅读时间与性别列联表并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”.

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·无锡模拟)已知函数f(x)满足,当x[0,1]时,f(x)x.g(x)f(x)mx2m在区间(1,1]上有两个零点,则实数m的取值范围是________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2018·日照一模)如图所示,ABCD-A1B1C1D1是长方体,OB1D1的中点,直线A1C交平面AB1D1于点M,给出下列结论:

A、M、O三点共线;②A、M、O、A1不共面;③A、M、C、O共面;④B、B1、O、M共面.

其中正确结论的序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正项等差数列{an}满足a1=4,且a2a4+2,2a7-8成等比数列,{an}的前n项和为Sn.

(1)求数列{an}的通项公式;

(2)令,求数列{bn}的前n项和Tn.

查看答案和解析>>

同步练习册答案