【题目】如图数表:
每一行都是首项为1的等差数列,第行的公差为,且每一列也是等差数列,设第行的第项为.
(1)证明:成等差数列,并用表示();
(2)当时,将数列分组如下:(),(),(),…(每组数的个数构成等差数列). 设前组中所有数之和为,求数列的前项和;
(3)在(2)的条件下,设是不超过20的正整数,当时,求使得不等式恒成立的所有的值.
【答案】(1)见解析,(2)(3)
【解析】
(1)根据前三行成等差数列得,根据最后一列成等差数列可得,把在第行和第列分别表示出来,可得出关于的表达式;
(2)根据分组的特点结合等差数列前和公式计算,利用错位相减法计算;
(3)把代入不等式,得,引入函数,由函数的单调性可求得使不等式成立的的最小值即可得的取值.
解:(1) 由题意,,且,
得,即
所以成等差数列
由且
即
化简得
(2) 当时,
按数列分组规律,第组中有个奇数,
所以第1组到第组共有个奇数.
则前个奇数的和为,
即,
从而 ,
,①则
,②
①-②得,
∴.
(3) 由得.
令,
当时,都有,即,
而,
且当时,
,即单调递增,故有.
所以,满足条件的所有正整数.
科目:高中数学 来源: 题型:
【题目】如果一个四面体的三个面是直角三角形,下列三角形:(1)直角三角形;(2)锐角三角形;(3)钝角三角形;(4)等腰三角形;(5)等腰直角三角形.那么可能成为这个四面体的第四个面是_____.(填上你认为正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{2n﹣1}的前n项1,3,7,…,2n﹣1组成集合(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出Sn=__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域是,且,,当时,.
(1)判断的奇偶性,并说明理由;
(2)求在区间上的解析式;
(3)是否存在整数,使得当时,不等式有解?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分10两4钱,戊分5两6钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)( )
A.乙分8两,丙分8两,丁分8两B.乙分8两2钱,丙分8两,丁分7两8钱
C.乙分9两2钱,丙分8两,丁分6两8钱D.乙分9两,丙分8两,丁分7两
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F,短轴的两个端点分别为A、B,且,为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;
(3)已知是过点A的两条互相垂直的直线,直线与圆相交于两点,直线与椭圆C交于另一点R;求面积取最大值时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为梯形, 底面, , , , .
(1)求证:平面 平面;
(2)设为上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率,若椭圆的左、右焦点分别为,,椭圆上一动点和,组成的面积最大为.
(1)求椭圆的方程;
(2)若存在直线:和椭圆相交于不同的两点,,且原点与,连线的斜率之和满足:.求直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com