精英家教网 > 高中数学 > 题目详情
16.若x,y满足约束条件$\left\{\begin{array}{l}x-y-4≤0\\ x+2y-2≥0\\ x-2y+2≥0\end{array}\right.$,则z=2x+y的最小值等于1.

分析 画出满足条件的平面区域,通过平移直线求出z的最小值即可.

解答 解:画出满足条件的平面区域,如图示:

由z=2x+y得:y=-2x+z,平移直线y=-2x,
显然直线过(0,1)时,z最小,
z的最小值是1,
故答案为:1.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设等差数列{an}的前n项和为Sn,若a1=-40,a6+a10=-10,则S8=-180.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.水平放置的△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为(  )
A.$\sqrt{2}$B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.小明从家到学校有三个路口,各路口遇到红灯的概率依次为$\frac{3}{4}$,$\frac{4}{5}$,$\frac{1}{2}$,且每个路口遇到红灯与否相互独立.
(1)求最多遇到1次红灯的概率;
(2)设小明上学路上求遇到红灯次数为X,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=$\sqrt{2}$,AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)在答题卡的图中画出四棱锥F-ABCD与四棱锥E-ABCD的公共部分,并计算此公共部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=mx+2,g(x)=x2-2x,?x0∈[-1,2],?x1∈[-1,2],使得f(x0)>g(x1),则实数m的取值范围是-1.5<m<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不等式$\frac{{k{x^2}+kx+4}}{{{x^2}+x+1}}$>1.
(1)若不等式对于任意x∈R恒成立,求实数k的取值范围;
(2)若不等式对于任意x∈(0,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一个平面内的三个单位向量,且$\overrightarrow a⊥\overrightarrow b$,则$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)$的取值范围是(  )
A.$[-1,\sqrt{2}]$B.$[-\sqrt{2},\sqrt{2}]$C.$[\sqrt{2}-2,2]$D.$[1-\sqrt{2},1+\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在锐角△ABC中,内角A,B,C的对边分别为a,b,c.且5asinB=3b.
(Ⅰ)求cosA的值;
(Ⅱ)若a=3,b+c=5,求△ABC的面积.

查看答案和解析>>

同步练习册答案