精英家教网 > 高中数学 > 题目详情

【题目】动点距离与到直线的距离之比为,记动点的轨迹为.

1)求出曲线的方程,并求出的最小值,其中点

2是曲线上的动点,且直线经过定点,问在轴上是否存在定点,使得,若存在,请求出定点;若不存在,请说明理由.

【答案】1,最小值为3;(2)存在,定点.

【解析】

1)设动点为,设点到直线的距离为,由动点距离与到直线的距离之比为,利用直接法求出点的轨迹;又的最小值即为点到直线的距离;

2)假设存在满足题意的定点,设,设直线的方程为 ,由消去,得,利用韦达定理以及,得直线的斜率和为零,建立方程求解即可.

1)设动点,设点到直线的距离为

由已知,可得

化简得到轨迹的方程为:

所以的最小值即为点到直线的距离,最小值为3

2)假设存在满足题意的定点,设,设直线的方程为

消去,得

由直线过椭圆内一点作直线,故

由韦达定理得:

,得直线的斜率和为零,所以有:

故:,

所以存在定点,当直线斜率不存在时定点也符合题意,

综上所述,定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周牌算经》作注时验证勾股定理的示意图,现在提供6种不同的颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂同色的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,分别是的中点,将沿着向上翻折到的位置,连接.

1)求证:平面

2)若翻折后,四棱锥的体积,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】101日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在101日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:

手机店

型号手机销量

6

6

13

8

11

型号手机销量

12

9

13

6

4

(Ⅰ)若在101日当天,从这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;

(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;

(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值构成的集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数 ,有,在 上, ,若 ,则实数m的取值范围为( )

A.B.

C.[-3,3]D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4:坐标系与参数方程)

已知圆的参数方程为为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上的动点,求点与曲线上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1121248124816……,其中第一项是,接下来的两项是,再接下来的三项是……,以此类推,求满足如下条件的最小整数且该数列的前项和为2的整数幂,那么该软件的激活码是________

查看答案和解析>>

同步练习册答案