精英家教网 > 高中数学 > 题目详情
12.函数f(x)=$\left\{\begin{array}{l}{f(x+1)-1,x≤0}\\{lo{g}_{\frac{1}{2}}x,0<x≤1}\end{array}\right.$,则f(-2015)的值为-2016.

分析 利用已知条件求出x<0时函数的关系式,然后化简所求的表达式,推出结果即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{f(x+1)-1,x≤0}\\{lo{g}_{\frac{1}{2}}x,0<x≤1}\end{array}\right.$,
x≤0时,f(x)=f(x+1)-1,
则f(-2015)=f(-2014)-1=f(-2013)-2=f(-2012)-3=…=f(1)-2016=${log}_{\frac{1}{2}}1$-2016=-2016.
故答案为:-2016.

点评 本题考查分段函数的应用,函数的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若存在x∈[-2,-1],使得不等式(m2-m)4x-2x-1≤0成立,则实数m∈[-4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题:“在平面直角坐标系中,两平行直线的斜率相等”的条件是两条直线平行,结论是两条直线斜率相等.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于x的方程x2+(1+a)x+1+a+b=0(a,b∈R)的两根分别为x1,x2且-1<x1<1<x2<2,则$\frac{b}{a}$的取值范围是(-$\frac{5}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,右焦点恰为圆C2:(x$-\sqrt{3}$)2+y2=7的圆心.
(1)求椭圆C1的方程;
(2)设直线l与曲线C1,C2都只有一个公共点,记直线l与圆C2的公共点为A,求A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若任意的实数a≤-1,恒有-a•2x+x+3a≥0成立.则实数x的取值范围为(log23,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=$\frac{ax+b}{{x}^{2}+1}$(x∈R,且a≠0)的值域为[-1,4],则a,b的值为(  )
A.a=4,b=3B.a=-4,b=3C.a=±4,b=3D.a=4,b=±3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}中.a1=2.a5=6
(1)求数列{an}的通项公式:
(2)若bn=3${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案