精英家教网 > 高中数学 > 题目详情

已知函数,其中.

(1)若对一切恒成立,求的取值范围;

(2)在函数的图像上取定两点,记直线 的斜率为,证明:存在,使成立.

 

【答案】

(1)

(2)由题意可得

【解析】

试题分析:(1),令

单调递减;当时,单调递增

∴当时, 有最小值

于是对于一切,恒成立,当且仅当    ①

,则

时,取最大值1,当且仅当时,①式成立

综上所述的取值的集合为

(2)由题意可得

单调递减;当时,单调递增。故当时,

,又

所以

所以存在,使

考点:利用导数研究函数的极值,不等式恒成立问题。

点评:典型题,在给定区间,导数非负,函数为增函数,导数非正,函数为减函数。求函数的极值问题,基本步骤是“求导数、求驻点、研究单调性、求极值”。“恒成立问题”往往通过构造函数,研究函数的最值,使问题得到解答。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案