【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ADC=60°,侧面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,M为PB的中点.
(1)求证:PA⊥平面CDM.
(2)求二面角D-MC-B的余弦值.
【答案】(1) 见解析;(2)-.
【解析】试题分析:
(1)取DC中点O,连接PO,根据题意可证得OA,OC,OP两两垂直,建立空间直角坐标系,运用坐标法可证得,从而PA⊥DM,PA⊥DC,根据线面垂直的判定定理可得结论.(2)结合(1)可求得平面BMC的一个法向量,又平面CDM的法向量为,求出两向量夹角的余弦值,结合图形可得二面角的余弦值.
试题解析:
(1)取DC中点O,连接PO.
∵侧面PDC是正三角形,
∴PO⊥DC,
又平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,
∴PO⊥底面ABCD.
又底面ABCD为菱形,且∠ADC=60°,DC=2,
∴DO=1,OA⊥DC.
以O为原点,分别以OA,OC,OP所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系O-xyz.
则, ,
∴,
∴,
∴PA⊥DM,PA⊥DC,
又DM∩DC=D,
∴PA⊥平面CDM.
(2)由(1)得,
设平面BMC的一个法向量,
由,得,
令z=1,得.
由(1)知平面CDM的法向量为,
∴,
由图形知二面角D-MC-B是钝角,
所以二面角D-MC-B的余弦值为.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数,),以为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设,直线交曲线于两点,是直线上的点,且,当最大时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的各项均为正数,且a1+2a2=5,4a=a2a6.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=2,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=,AB=2BC=2,AC⊥FB.
(1)求证:AC⊥平面FBC;
(2)求四面体FBCD的体积;
(3)线段AC上是否存在点M,使得EA∥平面FDM?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2ax+5.
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若a≤1,求函数y=|f(x)|在[0,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).证明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是,(为参数).
(1)求直线的直角坐标方程和曲线的普通方程;
(2)设直线与曲线交于两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com