精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠ADC=60°,侧面PDC是正三角形,平面PDC⊥平面ABCDCD=2,MPB的中点.

(1)求证:PA⊥平面CDM

(2)求二面角DMCB的余弦值.

【答案】(1) 见解析;(2)-

【解析】试题分析:

(1)取DC中点O,连接PO根据题意可证得OAOCOP两两垂直,建立空间直角坐标系,运用坐标法可证得从而PADMPADC根据线面垂直的判定定理可得结论(2)结合(1)可求得平面BMC的一个法向量又平面CDM的法向量为求出两向量夹角的余弦值,结合图形可得二面角的余弦值

试题解析:

1DC中点O,连接PO

侧面PDC是正三角形,

PODC

又平面PDC⊥平面ABCD平面PDC平面ABCDDC

PO⊥底面ABCD

又底面ABCD为菱形,且∠ADC60°DC2

DO1OADC

O为原点,分别以OAOCOP所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系O-xyz

PADMPADC

DMDCD

PA⊥平面CDM

(2)1

设平面BMC的一个法向量

z1,得

(1)知平面CDM的法向量为

由图形知二面角DMCB是钝角,

所以二面角DMCB的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设,直线交曲线两点,是直线上的点,且,当最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为正数,且a1+2a2=5,4a=a2a6.

(1)求数列{an}的通项公式;

(2)若数列{bn}满足b1=2,且bn+1=bn+an,求数列{bn}的通项公式;

(3)设,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,ABCDACAB=2BC=2,ACFB.

(1)求证:AC⊥平面FBC

(2)求四面体FBCD的体积;

(3)线段AC上是否存在点M,使得EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2-2ax+5

1)若fx)的定义域和值域均是[1a],求实数a的值;

2)若a≤1,求函数y=|fx|[01]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).证明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是,(为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)设直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 底面

(1)证明:平面平面

(2)若二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案