精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=x2 在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围( )
A.[1,+∞)
B.[1,
C.[1,+2)
D.

【答案】B
【解析】解:∵f(x)的定义域为(0,+∞),f′(x)=2x﹣ =

f′(x)>0得,x> ;f′(x)<0得,0<x<

∵函数f(x)定义域内的一个子区间(k﹣1,k+1)内不是单调函数,∴0≤k﹣1< <k+1,∴1≤k<

所以答案是:B.

【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 + =1(a>b>0)右顶点与右焦点的距离为 ﹣1,短轴长为2 . (Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 为平面向量,若存在不全为零的实数λ,μ使得λ =0,则称 线性相关,下面的命题中, 均为已知平面M上的向量. ①若 =2 ,则 线性相关;
②若 为非零向量,且 ,则 线性相关;
③若 线性相关, 线性相关,则 线性相关;
④向量 线性相关的充要条件是 共线.
上述命题中正确的是(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且 为不共线的平面向量.
(1)若 ,求k的值;
(2)若 ,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= AD.
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求锐二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间四边形ABCD中,E,F,G分别是AB,BC,CD的中点,

(1)求证:BD∥平面EFG;
(2)若AD=CD,AB=CB,求证:AC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ax2+4(a﹣3)x+5在区间(﹣∞,3)上是减函数,则a的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,对于 上的任意x1 , x2 , 有如下条件:
;②|x1|>x2;③x1>|x2|;④
其中能使g(x1)>g(x2)恒成立的条件序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系表:

t

0

3

6

9

12

15

18

21

24

y

5

7.5

5

2.5

5

7.5

5

2.5

5

经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案