精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\frac{ax+b}{x^2}$为奇函数,且f(1)=1.
(Ⅰ)求实数a与b的值;
(Ⅱ)若函数g(x)=$\frac{1-f(x)}{x}$,设{an}为正项数列,且当n≥2时,[g(an)•g(an-1)+$\frac{{{a_n}+{a_{n-1}}-1}}{{{a_n}^2•{a_{n-1}}^2}}$]•an2=q,(其中q≥2016),{an}的前n项和为Sn,bn=$\sum_{i=1}^n{\frac{{{S_{i+1}}}}{S_i}}$,若bn≥2017n恒成立,求q的最小值.

分析 (Ⅰ)利用函数f(x)=$\frac{ax+b}{x^2}$为奇函数,且f(1)=1,代入计算求实数a与b的值;
(Ⅱ)bn≥2017n恒成立,即:$\frac{{1-{q^2}}}{1-q}+\frac{{1-{q^3}}}{{1-{q^2}}}+…+\frac{{1-{q^{n+1}}}}{{1-{q^n}}}$≥2017n恒成立,分类讨论,即可求q的最小值.

解答 解:(Ⅰ)因为f(x)为奇函数,$\frac{-ax+b}{x^2}=-\frac{ax+b}{x^2}$,
得b=0,又f(1)=1,得a=1;
(Ⅱ)由$f(x)=\frac{1}{x}$,得$g(x)=\frac{x-1}{x^2}$,且$[g({a_n})•g({a_{n-1}})+\frac{{{a_n}+{a_{n-1}}-1}}{{{a_n}^2•{a_{n-1}}^2}}]•{a_n}^2=q$,
∴$\frac{a_n}{{{a_{n-1}}}}=q(n≥2)$∴${S_n}=\frac{{{a_1}(1-{q^n})}}{1-q}$,∴$\frac{{{S_{n+1}}}}{S_n}=\frac{{1-{q^{n+1}}}}{{1-{q^n}}}$.
由:${b_n}=\sum_{i=1}^n{\frac{{{S_{i+1}}}}{S_i}}=\frac{{1-{q^2}}}{1-q}+\frac{{1-{q^3}}}{{1-{q^2}}}+…+\frac{{1-{q^{n+1}}}}{{1-{q^n}}}$(q≥2016),
∵bn≥2017n恒成立,即:$\frac{{1-{q^2}}}{1-q}+\frac{{1-{q^3}}}{{1-{q^2}}}+…+\frac{{1-{q^{n+1}}}}{{1-{q^n}}}$≥2017n恒成立,
当q≥2016时,∵$\frac{{1-{q^{n+1}}}}{{1-{q^n}}}=\frac{{\frac{1}{q^n}-q}}{{\frac{1}{q^n}-1}}=\frac{q-1}{{1-\frac{1}{q^n}}}+1$,
再由复合函数单调性知,数列$\{\frac{{1-{q^{n+1}}}}{{1-{q^n}}}\}$为单调递减数列,
且n→∞时,$\frac{{1-{q^{n+1}}}}{{1-{q^n}}}=\frac{{\frac{1}{q^n}-q}}{{\frac{1}{q^n}-1}}→q$,
当q≥2017时,$\{\frac{{1-{q^{n+1}}}}{{1-{q^n}}}\}$中的每一项都大于2017,
∴$\frac{{1-{q^2}}}{1-q}+\frac{{1-{q^3}}}{{1-{q^2}}}+…+\frac{{1-{q^{n+1}}}}{{1-{q^n}}}$≥2017n恒成立;
当q∈[2016,2017)时,数列$\{\frac{{1-{q^{n+1}}}}{{1-{q^n}}}\}$为单调递减数列,
且n→∞时,$\frac{{1-{q^{n+1}}}}{{1-{q^n}}}=\frac{{\frac{1}{q^n}-q}}{{\frac{1}{q^n}-1}}→q$,而q<2017,
说明数列$\{\frac{{1-{q^{n+1}}}}{{1-{q^n}}}\}$在有限项后必定小于2017,设$\frac{{1-{q^{r+1}}}}{{1-{q^r}}}=2017+{M_r}(r=1,2,3,…,n)$,
且数列{Mn}也为单调递减数列,M1≥0.
根据以上分析:数列$\{\frac{{1-{q^{n+1}}}}{{1-{q^n}}}\}$中必有一项(设为第k项)$\frac{{1-{q^{k+1}}}}{{1-{q^k}}}=2017+{M_k}$,
(其中Mk≥0,且Mk+1<0)
∴$\frac{{1-{q^2}}}{1-q}+\frac{{1-{q^3}}}{{1-{q^2}}}+…+\frac{{1-{q^{n+1}}}}{{1-{q^n}}}=\frac{{1-{q^2}}}{1-q}+\frac{{1-{q^3}}}{{1-{q^2}}}+…+\frac{{1-{q^{k+1}}}}{{1-{q^k}}}+…+\frac{{1-{q^{n+1}}}}{{1-{q^n}}}$
=2017n+M1+M2+…+Mk+Mk+1+…+Mn(∵{Mn}为单调递减数列)
≤2017n+kM1+Mk+1+…+Mn≤2017n+kM1+(n-k)Mk+1
当n→∞时,kM1+(n-k)Mk+1<0,∴$\frac{{1-{q^2}}}{1-q}+\frac{{1-{q^3}}}{{1-{q^2}}}+…+\frac{{1-{q^{n+1}}}}{{1-{q^n}}}<2017n$,
∴q∈[2016,2017)时,不满足条件.
综上所得:qmin=2017.

点评 本题考查函数的奇偶性,考查数列求和,考查分类讨论的数学思想,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(x-$\frac{π}{6}$)cos(x-$\frac{π}{6}$)(x∈R),则下面结论错误的是(  )
A.函数f(x)的图象关于点(-$\frac{π}{6}$,0)对称
B.函数f(x)的图象关于直线x=-$\frac{π}{12}$对称
C.函数f(x)在区间[0,$\frac{5π}{12}$]上是增函数
D.函数f(x)的图象是由函数y=$\frac{1}{2}$sin2x的图象向右平移$\frac{π}{6}$个单位而得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在三视图如图的多面体中,最大的一个面的面积为(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.3D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设$\overrightarrow{e_1},\overrightarrow{e_2}$为单位向量,其中$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow b=\overrightarrow{e_2}$,且$\overrightarrow a•\overrightarrow b=2$,则$\overrightarrow{e_1}$与$\overrightarrow{e_2}$的夹角为60°,$|\overrightarrow a|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.现有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从一副标准的52张扑克牌(不含大王和小王)中任意抽一张,抽到Q的概率为(  )
A.$\frac{1}{52}$B.$\frac{1}{13}$C.$\frac{1}{26}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0)
(1)若$\overrightarrow{AB}•\overrightarrow{AC}=0$,求c的值;
(2)若c=5,求cos∠A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某几何体的俯视图是如图所示的正方形,正视图和侧视图都是底面边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设有一决策系统,其中每个成员作出的决策互不影响,且每个成员作正确决策的概率均为p(0<p<1).当占半数以上的成员作出正确决策时,系统作出正确决策.要使有5位成员的决策系统比有3位成员的决策系统更为可靠,p的取值范围是(  )
A.(${\frac{1}{3}$,1)B.(${\frac{1}{2}$,1)C.(-${\frac{2}{3}$,1)D.($\frac{2}{3}$,1)

查看答案和解析>>

同步练习册答案