精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中, 的中点.

(1)求证:

(2)设平面平面 ,求二面角的平面角的正弦值.

【答案】(1)见解析;(2).

【解析】试题分析:

(1)由题意可得证得平面,然后利用线面垂直的判断定理即可证得

(2)由题意建立空间直角坐标系,结合平面的法向量可得面角的平面角的正弦值是.

试题解析:

(1)设中点为,连接

因为,所以

的中点,

所以.

因为,所以

因为,所以平面,又平面

所以

(2)由(1)知

因为平面平面,平面平面 平面

所以平面,又.

为坐标原点,分别以 轴, 轴, 轴的正方向建立空间直角坐标系,如图所示,

因为 ,所以

中点, ,得

则,

设平面的一个法向量为

,即,可得

因为平面平面,平面平面 平面

所以平面,所以平面的一个法向量为

设二面角的大小为,则

所以

∴二面角的平面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;

方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.

方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.

(1)求某员工选择方案甲进行抽奖所获奖金(元)的分布列;

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在,分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见下图)

(Ⅰ)求所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?

附表及公式:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,在以极点为直角坐标原点,极轴为轴的正半轴建立的平面直角坐标系中,直线的参数方程为为参数).

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)在平面直角坐标系中,设曲线经过伸缩变换 得到曲线,若为曲线上任意一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某高中学生每天的睡眠时间,随即对20名男生和20名女生进行问卷调查.

(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“睡眠严重不足”的概率;

(2)完成下面列联表,并回答是否有的把握认为“睡眠时间与性别有关”?

参考公式:

临界表值:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行:

设实系数一元二次方程……①

在复数集内的根为 ,则方程①可变形为

展开得.……②

比较①②可以得到:

类比上述方法,设实系数一元次方程)在复数集内的根为 ,…, ,则这个根的积 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是自然对数的底数), .

(1)求曲线在点处的切线方程;

(2)求的单调区间;

(3)设,其中的导函数,证明:对任意.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, .

)当时,求曲线在点处的切线方程;

)当时,求函数的单调区间;

)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案