精英家教网 > 高中数学 > 题目详情
14.已知函数$f(x)=\sqrt{3}sin2x-cos2x$的图象在区间$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均单调递增,则正数a的取值范围是(  )
A.$[{\frac{π}{6},\frac{5π}{12}}]$B.$[{\frac{5π}{12},π}]$C.$[{\frac{π}{4},π}]$D.$[{\frac{π}{4},\frac{2π}{3}}]$

分析 求解出函数$f(x)=\sqrt{3}sin2x-cos2x$的单调增区间,根据在区间$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均单调递增建立关系可得答案.

解答 解:由函数$f(x)=\sqrt{3}sin2x-cos2x$=2sin(2x-$\frac{π}{6}$),
令$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$$≤\frac{π}{2}+2kπ$
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$,k∈Z.
当k=0时,可得增区间为[$-\frac{π}{6}$,$\frac{π}{3}$],
∵在区间$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均单调递增
则$\frac{a}{3}≤\frac{π}{3}$,
∴0<a≤π.
当k=1时,可得增区间为[$\frac{5π}{6}$,$\frac{4π}{3}$],
则2a$≥\frac{5π}{6}$,
∴a$≥\frac{5π}{12}$.
综上可得:π≥a$≥\frac{5π}{12}$.
故选B

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-a(x-1).
(1)求函数f(x)的极值;
(2)当a≠0时,过原点分别作曲线 y=f(x)与y=ex的切线l1,l2,若两切线的斜率互为倒数,求证:1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在棱长为2的正四面体A-BCD中,E、F分别为直线AB、CD上的动点,且$|{EF}|=\sqrt{3}$.若记EF中点P的轨迹为L,则|L|等于$\frac{π}{4}$.(注:|L|表示L的测度,在本题,L为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={1,2,3,4},B={x|x≤2},则A∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{1}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设随机变量X~N(2,1),则P(|X|<1)=(  )
附:(若随机变量ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.72%)
A.13.59%B.15.73%C.27.18%D.31.46%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且n+1=1+Sn对一切正整数n恒成立.
(1)试求当a1为何值时,数列{an}是等比数列,并求出它的通项公式;
(2)在(1)的条件下,当n为何值时,数列$\left\{{lg\frac{400}{a_n}}\right\}$的前n项和Tn取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex[x2-(a+2)x+b],曲线y=f(x)在x=0处的切线方程为2a2x+y-b=0,其中e是自然对数的底数).
(Ⅰ)确定a,b的关系式(用a表示b);
(Ⅱ)对于任意负数a,总存在x>0,使f(x)<M成立,求实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若从2个滨海城市和2个内陆城市中随机选取1个取旅游,那么恰好选1个滨海城市的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案