精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式,a>b>c,且满足f(a)f(b)f(c)<0,若实数d是函数y=f(x)的一个零点,那么下列四个判断:①d<a;②d>b;③d<c;④d>c.其中有可能成立的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
D
分析:先由f(a)f(b)f(c)<0,可知有两种情况:(1)当f(a),f(b),f(c)中两正一负时,则得出c<b<d<a;当f(a),f(b),f(c)中三负时,则有d<c<b<a;从而得出其中有可能成立的个数.
解答:由f(a)f(b)f(c)<0,可知有两种情况.
又若实数d是函数y=f(x)的一个零点可知:f(d)=0.
当f(a),f(b),f(c)中两正一负时,则有f(a)<0,f(b)>0,f(c)>0,这时,c<b<d<a;
当f(a),f(b),f(c)中三负时,则有d<c<b<a;
其中有可能成立的个数是:4.
故选D.
点评:本小题主要考查函数零点的判定定理、不等式的解法等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案