精英家教网 > 高中数学 > 题目详情
16.直线y=x,曲线y2=4x所围图形的面积是$\frac{8}{3}$.

分析 求得交点坐标,根据定积分的几何意义,选择合适的积分形式.

解答 解:由$\left\{\begin{array}{l}{y=x}\\{{y}^{2}=4x}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,
则直线y=x,曲线y2=4x交点坐标(0,0),(4,4),
∴直线y=x,曲线y2=4x所围图形的面积S,
对y积分,S=${∫}_{0}^{4}$(y-$\frac{{y}^{2}}{4}$)dy=($\frac{1}{2}$y2-$\frac{{y}^{3}}{12}$)${丨}_{0}^{4}$=$\frac{8}{3}$,
对x积分:S=${∫}_{0}^{4}$($2\sqrt{x}$-x)dx=($\frac{4}{3}$${x}^{\frac{3}{2}}$-$\frac{1}{2}$x2)${丨}_{0}^{4}$=$\frac{8}{3}$,

故答案为:$\frac{8}{3}$.

点评 本题考查定积分的几何意义,考查积分的运算,选择合适的积分形式,会简化运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.数列{an}的首项a1=1,前n项和为Sn,满足关系3Sn-5Sn-1=3(n≥2)
(1)求数列{an}的通项公式;
(2)设函数$f(x)=\frac{2x+3}{3x}$,作数列{bn},使b1=1,${b_n}=f(\frac{1}{{{b_{n-1}}}})$.(n≥2)求bn的通项公式
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=2px(p>0)上一点(5,m)到焦点的距离为6,P,Q分别为抛物线C与圆M:(x-6)2+y2=1上的动点,当|PQ|取得最小值时,向量$\overrightarrow{PQ}$在x轴正方向上的投影为(  )
A.2-$\frac{{\sqrt{5}}}{5}$B.2$\sqrt{5}$-1C.1-$\frac{{\sqrt{21}}}{21}$D.$\sqrt{21}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,周期是$\frac{π}{2}$的偶函数是(  )
A.y=sin4xB..y=tan2xC.y=cos22x-sin22xD.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线x-y+3=0被圆(x+2)2+(y-2)2=1截得的弦长为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{6}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三次函数f(x)=x3+ax2+7ax在 (-∞,+∞)是增函数,则a的取值范围是(  )
A.0≤a≤21B.a=0或a=7C.a<0或a>21D.a=0或a=21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知O为坐标原点,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,上顶点为P,右顶点为Q,以F1F2为直径的圆O过点P,直线PQ与圆O相交得到的弦长为$\frac{{2\sqrt{3}}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于M,N两点,l与x轴,y轴分别相交于A,B两点,满足:①记MN的中点为E,且A,B两点到直线OE的距离相等;②记△OMN,△OAB的面积分别为S1,S2,若S1=λS2.当S1取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=x2+2xf′(1),则f′(0)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x3-ax2+2x在实数集R上单调递增的一个充分不必要条件是(  )
A.a∈[0,6]B.$a∈[-\sqrt{6},\sqrt{6}]$C.a∈[-6,6]D.a∈[1,2]

查看答案和解析>>

同步练习册答案