精英家教网 > 高中数学 > 题目详情
4.给出下列四个说法:
①f(x)=x0与g(x)=1是同一个函数;
②y=f(x),x∈R与y=f(x+1),x∈R可能是同一个函数;
③y=f(x),x∈R与y=f(t),t∈R是同一个函数;
④定义域和值域相同的函数是同一个函数.
其中正确的个数是(  )
A.3B.2C.1D.0

分析 本题通过对函数的定义域、值域、解析式的研究,从而判断选项中的函数是否为同一函数,不是同一函数的,只要列举一个原因即可.

解答 解:命题①,f(x)=x0,x≠0,g(x)=1中,x∈R,故不是同一个函数;
命题②,若f(x)=1,则f(x+1)=1,y=f(x),故y=f(x+1)有可能是同一个函数,该选项正确;
命题③,y=f(x)与y=f(t)解析式相同,定义域一致,y=f(x)与y=f(t)是同一个函数;
命题④,函数y=x与y=x+1,定义域和值域均为R,但由于对应法则不同,故浊相同的函数,选项④不正确.
故选B.

点评 本题考查了函数的表示、函数的定义域、值域、解析式,本题难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx,$g(x)=\frac{1}{2}ax+b$.
(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(Ⅱ)若$φ(x)=\frac{m(x-1)}{x+1}-f(x)$在[1,+∞)上是减函数,求实数m的取值范围;
(Ⅲ)证明不等式:$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{ln(n+1)}$$<\frac{n}{2}+1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在区间$[{-\frac{π}{4},\frac{2π}{3}}]$上任取一个数x,则函数$f(x)=3sin({2x-\frac{π}{6}})$的值不小于0的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{6}{11}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则此几何体的表面积为(  )
A.$80+16\sqrt{2}$B.$96+13\sqrt{2}$C.96D.112

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的面积为S,且$\overrightarrow{AB}•\overrightarrow{AC}=S$.
( I)求tan2A的值;
( II)若cosC=$\frac{3}{5}$,且|$\overrightarrow{AC}-\overrightarrow{AB}$|=2,求△ABC的面积为S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)为二次函数,-1和3是函数y=f(x)-x-4的两个零点,且f(0)=1
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ) 设g(x)=f(x)-3x-6,求y=g(log3x)在区间$[\frac{1}{9},27]$上的最值,并求相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,几何体ABC-C1B1的底面ABC为等边三角形,侧面BB1C1C为矩形,B1B⊥平面ABC,E为边AB1的中点,D在边BC上移动.
(1)若D为边BC的中点,求证:BE∥平面ADC1
(2)若AB=BB1=2,记l为平面BEC与平面ADC1的交线,试确定点D的位置,使得直线l与平面ACC1所成的角θ满足sinθ=$\frac{\sqrt{21}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知随机变量ε的分布列如下表:
ε01234
p0.20.40.30.080.02
求其数学期望、方差和标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在正四棱锥P-ABCD中,O为正方形ABCD的中心,$\overrightarrow{PE}$=λ$\overrightarrow{EO}$(2≤λ≤4),且平面ABE与直线PD交于F,$\overrightarrow{PF}$=f(λ)$\overrightarrow{PD}$,则(  )
A.f(λ)=$\frac{λ}{λ+2}$B.f(λ)=$\frac{2λ}{λ+6}$C.f(λ)=$\frac{3λ}{λ+7}$D.f(λ)=$\frac{4λ}{λ+9}$

查看答案和解析>>

同步练习册答案